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INTRODUCTION

This manual presents the basic principles and techniques of cryptanalysts and their relation to cryp-
tography. Cryptography concerns the various ways of protecting messages from being understood by
anyone except those for whom the messages are intended. Cryptographers are the people who create
and use codes and ciphers. Cryptanalytics is the art and science of solving unknown codes and ciphers.
Cryptanalysts try to break the codes and ciphers created and used by cryptographers.

This publication is organized into six parts. Part One explains basic principles which apply to all the
parts that follow. The following five parts each cover a major type of system and the cryptanalytic
techniques that apply to it. Parts Two, Three, and Four each build on the techniques explained in the
parts that precede them. A new student should study these in order. Parts Five and Six are largely
independent of Parts Two through Four and can be used separately after Part One.

For practice in the techniques explained in this manual, the Army Correspondence Course Program
offers a course in basic cryptanalysts. See the References Section at the back of this manual for further
information.
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PREFACE

This field manual is intended as a training text in basic cryptanalytics and as a reference for
cryptanalysts in military occupational specialty (MOS) 98C and related MOSs.

The proponent of this publication is Headquarters, United States Army Training and Doctrine Com-
mand (TRADOC). Send comments and recommendations on DA Form 2028 (Recommended Changes
to Publications and Blank Forms) directly to Commander, United States Army Intelligence School,
Fort Devens (USAISD), ATTN: ATSI-ETD-PD, Fort Devens, MA 01433-6301.
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P A R T  O N E

1-0

Introduction to  Cryptanalyst

CHAPTER 1

TERMINOLOGY AND SYSTEM TYPES

Section I

Basic Concepts

1-1. Cryptology

Cryptology is the branch of knowledge which concerns secret communications in all its
aspects. Two major areas of cryptology are cryptography and cryptanalytics.

1-2. Cryptography
Cryptography is the branch of cryptology concerned with protecting communications
from being read by the wrong people. Codes and ciphers that are used to protect com-
munications are called cryptographic systems. The application of codes and ciphers to
messages to make them unreadable is called encryption. The resulting messages are
called cryptograms. The people who create and use cryptographic systems are called
cryptographers.

1-3. Cryptanalytics
Cryptanalytics is the branch of cryptology concerned with solving the cryptographic
systems used by others. The objects of cryptanalysts are to read the text of encrypted
messages and to recover the cryptographic systems used. The text is recovered for its
potential intelligence value. The systems are recovered for application to future
messages in the same or similar systems.

1-4. Signal Communications
In military applications most encrypted messages are sent by electronic means rather
than physically carried or mailed. The electronic means include those sent by wire and
those transmitted by radio. Whether wire or radio is used, they can be sent by
telephone, telegraph (Morse code), teletypewriter, facsimile, or computer. The elec-
tronic means provide greater speed than physical means, but make the communica-
tions more vulnerable to intercept by others.
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Section II
Cryptographic Systems

1-5. Ciphers and Codes

There are two major categories of cryptographic systems, called ciphers and codes.
Nearly all military systems fall into one or the other of these categories or a combina-
tion of the two. Cipher systems are those in which the encryption is carried out on
single characters or groups of characters without regard to their meaning. Codes, on
the other hand, are more concerned with meanings than characters. The basic unit of
encryption in a code system is a word or phrase. When a message is encrypted by a
code system, code groups primarily replace words and phrases. Code groups may also
replace single characters where necessary, but the substitution for complete words is
the key distinction that separates a code from a cipher. Because of this, the
cryptanalytic approaches to codes and ciphers are quite different from each other.

a. Messages encrypted by a cipher system are said to be enciphered. Similarly,
messages encrypted by a code system are encoded. The resulting text is called
ciphertext or code text. When a cryptogram is translated back into readable form or
plaintext, it is said to be decrypted, or more specifically, decoded or deciphered.

b. The term code in this manual is given the formal meaning as explained above and
in more detail in Part Six. You will often see and hear the term code used with other
meanings that do not apply here. Code, in its more general sense, can mean any
cryptographic system or any system of replacing one set of values with another. The
terms Morse code, binary code, Baudot code, and computer code are examples of
the more general usage of the term.

1-6. Enciphered Codes
Some code systems are further encrypted by a cipher system to produce a hybrid type
called enciphered codes. This second encryption process is called superencryption or
superencipherment. Such systems are normally much more secure than singly encryp-
ted systems, but because of the added complexity take longer to encrypt and are more
prone to errors.

1-7. Other Means of Security Communications
Although most military requirements to secure communications are met through the
use of codes and ciphers, there are other approaches that can be used in special situa-
tions. One such approach is the use of concealment systems. In a concealment system,
the plaintext is hidden within another longer text by a predetermined rule or pattern.
Other approaches to concealing messages are to use invisible inks or to reduce a
message photographically to a dot-sized piece of film. Another approach is to transmit
a message from a tape played so fast that it sounds to the ear like a burst of static on
the radio. Security for all these methods depends on concealing the fact that a secret
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message is being sent at all. Once the existence of the communications is suspected or
anticipated, the security is significantly lessened.

1-8. Types of Ciphers
There are hundreds of types of cipher systems ranging from very simple paper-and-
pencil systems to very complex cipher machine or computer enciphered systems.
These can be categorized as either transposition or substitution or a combination of the
two.

a.

b.

Transposition. In a transposition system, the plaintext characters of a message are
systematically rearranged. After transposing a message, the same characters are
still present, but the order of the letters is changed.

Substitution. In a substitution system, the plaintext characters of a message are
systematically replaced by other characters. After the substitution takes place, the
order of the underlying plaintext is unchanged, but the same characters are no
longer present. In the simplest substitution systems, the replacement is consistent;
a given plaintext character always receives the same replacement character or
characters. More secure systems change the replacements so that the equivalents
change each time the same character is encrypted.

1-9. Substitution Cipher Alphabets

c :

In everyday usage, an alphabet is a list of the letters used by a language. They vary by
language. Many European and Latin American languages share the same alphabet as
ours or have minor variations. Russian, Greek, Arabic, and Oriental languages have
recognizably different alphabets. The term cipher alphabets has a slightly different
meaning. Instead of a list of characters, a cipher alphabet has two parts; a list of plain-
text characters and their cipher equivalents. In the simplest ciphers, an English cipher
alphabet will have 26 plaintext letters and 26 ciphertext equivalents, as in the example
below.

p: a b c d e f g h i j k l m n o p q r s t u v w x y z
Z C F I L O R U X A D G J M P S V Y B E H K N Q T W

p: send help
c : BLMI ULGS

In the example, p: designates plaintext and c: designates ciphertext. For clarity, the
plaintext is shown in lower case and the ciphertext in capitals. A more secure alphabet
may have more ciphertext equivalents than plaintext characters to provide for some
variation in encipherment. Whether or not there is variation, a single alphabet system
is called a monoalphabetic system. A system which gains more security by
systematically using more than one alphabet is called a polyalphabetic system.
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CHAPTER 2

SECURITY OF CRYPTOGRAPHIC SYSTEMS

Section I

Requirements of Military Systems

2-1. Practical Requirements

Military cryptographic systems must meet a number of practical considerations.

a.

b.

An ideal cryptographic system for military purposes is a single all-purpose system
which is practical for use from the highest headquarters to the individual soldier on
the battlefield. It is secure no matter how much message traffic is sent using the
system. It is easy to use without special training. It presents no logistics problems in
keeping the users supplied with the system’s keys. It operates under all weather
conditions, on all means of communication, and in the dark. Little of value is com-
promised if the enemy captures the system. No system exists that meets all these
requirements.

Cryptographic system selection for military use depends on much more than its
degree of security. While protecting information from unfriendly eyes, a system
must still allow communications to take place rapidly, to be reliable, and to be
usable by all who need to conduct communications. It must be usable under all con-
ditions that the communications must take place. For example, a system requiring
an hour of pains-taking encryption would go unused by a combat military force on
the move. A system that has no tolerance for errors in its use would be inap-
propriate for soldiers under fire in severe weather conditions. A system that only
supports a low volume of messages would be inappropriate for a major message cen-
ter handling thousands of messages daily. A system that requires expensive,
sophisticated equipment would be inappropriate for a military force that can barely
afford to buy ammunition. No single system meets all the requirements of security,
speed, reliability, flexibility, and cost. The need for security must be balanced
against the practical requirements when systems are selected for use. Breakable
systems are found today, despite technological advances, because of these practical
requirements.
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2-2. Security Requirements of Military Systems
When security must be balanced against practical considerations, how much security
is enough security?

a. Almost any cryptographic system, given enough time and resources can eventually
be solved. The only exception to this is a system which uses absolutely random
changing keys with every character encrypted and never repeated. Such a system
can be achieved under very limited conditions, but is in practice impossible on any
large scale.

b. Even the most sophisticated machine or computer based cryptographic system can-
not produce random, nonrepeating keys. The requirement for each communicating
machine to generate the same keys prevents truly random keys. At best, a machine
system can produce keys by so sophisticated a process that it appears to be random
and resists efforts to recover the key generation process.

c. Given the practical considerations, a military system is expected to delay successful
analysis, not prevent it. When the system is finally solved, the information obtained
has lost most of its value.

2-3. Factors Affecting Cryptographic Security
As discussed above, given enough time and resources, almost any system can be
solved. No nation has unlimited resources to devote to the effort. If the potential in-
telligence payoff is timely enough and valuable enough and the resource costs
reasonable, the necessary resources will usually be devoted to the effort. A number of
factors affect the vulnerability of cryptographic systems to successful cryptanalytic
attack.

a. The most obvious factor is the cryptographic soundness of the system or systems in
use. Systems with minimal key repetition and limited orderly usage patterns
provide the most resistance.

b. The volume of traffic encoded or enciphered with a given set of keys affects system
security. The longer the keys are used without change, the more chance an analyst
has of finding exploitable repetition and patterns to build the attack upon.

c. The discipline of system users can play a major role in system security. A system
that is very sound when used correctly can often be quickly compromised when
rules are broken. An obvious example is when a user retransmits a message in the
clear that has also been transmitted in encrypted form. When it is recognized, the
comparison of the plaintext message with its encrypted form makes key recovery
much easier. Other typical examples of undisciplined usage are–

To mix plaintext and encrypted text in the same transmission.
To use the same keys longer than prescribed.
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To make unauthorized changes or simplifications to the system.
To openly discuss the contents of an encrypted message.
To openly discuss the system or its keys.

d. The amount of collateral information available about the message sender and the
situation under which the message was sent affect the security of a system. The
more that is known about the sender, the more likely the contents of a message can
be determined.

Section II
Cryptanalytic Attack

2-4. Role of Cryptanalysts in Communications
Intelligence Operations

Communications intelligence (COMINT) operations study enemy communications for
the purpose of obtaining information of intelligence value. COMINT includes the
collection, processing, evaluation, and reporting of intelligence information gathered
from enemy communications. When cryptanalysts is successful on a timely basis, it
provides the most direct indication of the enemy’s intentions. Cryptanalysis is most
likely to be successful when other COMINT techniques are also productive. Collection
of communications signals, transmitter location and identification, traffic analysis,
and translation and analysis of cleartext transmissions all play a part in the produc-
tion of COMINT.

2-5. Comparison Between Cryptanalysts and
Traffic Analysis
Cryptanalysis is the study of encrypted messages. These messages, when passed as
part of radio communications, or traffic, are considered the internals of the com-
munications. Traffic analysis is the study of the externals of the communications.

a. The externals of a communications include the following:
Call signs and call words.
Call up procedures between operators.
Radio frequencies.
Times of transmissions and total volume of traffic.
Routing information indicating where a message is to be sent.
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Chatter between radio operators.
Serial numbers or other filing information.
Indications of precedence or importance of the messages.
Indicators designating what cryptographic systems or what key settings are in
use.

These externals can be a rich source of information about an enemy, regardless of
encrypted message recovery. The systems that communicators use to provide this
external information can give substantial clues to unit type, organization, and the
purpose of communications.

b. The last category of externals mentioned above, indicators of the cryptographic
systems or keys in use, is of particular interest to both the traffic analyst and the
cryptanalyst. For the traffic analyst, the indicators help establish patterns of usage
which give clues to the enemy’s organization and structure. For the cryptanalyst,
the indicators help group messages into those encrypted by the same system or
keys. In some cases, they may even aid directly in the solution of the system.

2-6. Steps in Cryptanalysis
The solution of nearly every cryptogram involves four basic steps–

Determination of the language used.
Determination of the general system used.
Reconstruction of the specific keys to the system.
Reconstruction of the plaintext.

a. Determination of the language used normally accompanies identification of the
sender through traffic analysis or radio direction finding. If these forms of support
are unavailable, or if an enemy uses several languages, the determination of the
language may have to be made at a later stage of analysis.

b. Determination of the general system can come from several sources, such as–
A detailed study of the system characteristics, aided where necessary by charac-
ter frequency counts, searches for repeated patterns, and various statistical
tests. The study can extend beyond single messages to searching for patterns
and repetitions between different messages with similar characteristics. This
single step of system determination can be the most time consuming part of the
analysis.
Past history of system usage by the sender. In most cases, the user does not
change systems regularly but uses the same system or set of systems from one
day to the next. The specific keys may change regularly, but the general systems
remain unchanged except at longer intervals.
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System indicators included with the traffic. Whenever the user has a choice of
systems or a choice of keys within the system, the choice must be made known to
the receiving cryptographer. The choice is usually communicated by some form
of indicators, which can appear within the text of a message or as part of the
externals. When the indicators reveal the choice of system, they are called
system indicators or discriminants. When they denote specific frequently
changing keys to the system, they are called message indicators. Once you learn
just how indicators are used from day to day, they can provide a substantial
assist to cryptanalysts.

c. Reconstruction of the specific keys to the system is an important step. Although the
following step of plaintext recovery produces the most intelligence information, the
full key reconstruction can speed recovery of future messages. The approach used to
recover keys will vary greatly from system to system.

d. Reconstruction of the plaintext, although listed as the final step, will usually
proceed simultaneously with the key reconstruction. Either step can come first,
depending on the system and situation. Partial recovery of one aids in the recovery
of the other. The two steps often proceed alternately, with each recovery of one
helping in recovery of the other until a full solution is reached.

Section III

Analytic Aids

2-7. Analytic Aids to Identification and Solution
There are a number of aids to identification and solution available to help you as a
cryptanalyst. By preparing character frequency counts, performing statistical tests,
and recording observed repetitions and patterns in messages, you can compare the
data to established norms for various systems and languages. The appendixes to this
manual include charts, lists, and tables of normal data for the English language.
Similar data are available for other languages. The counting of character frequencies,
performance of statistical tests, and search for repetition and patterns can be done
manually or with computer assistance, where available. This section outlines the aids
that apply to many types of systems. Procedures that apply to specific systems are
explained in individual sections.
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2-8. Language Characteristics
Each language has characteristics that aid successful cryptanalysts.

a. The individual letters of any language occur with greatly varying frequencies. Some
letters are used a great deal. Others are used only a small percentage of the time. In
English, the letter E is the most common letter used. It occurs about 13 percent of
the time, or about once in every eight letters. In small samples, other letters may be
more common, but in almost any sample of 1,000 letters of text or more, E will be
the most frequent letter. In other languages, other letters sometimes dominate. In
Russian, for example, O is the most common letter. The eight highest frequency let-
ters in English, shown in descending order, are E, T, N, R, O, A, I and S. The eight
highest frequency letters make up about 67 percent of our language. The remaining
18 letters only make up 33 percent of English text. The lowest frequency letters are
J, K, Q, X, and Z. These five letters makeup only a little over 1 percent of English
text. The vowels, A, E, I, O, U and Y, make up about 40 percent of English text. In
many cryptographic systems, these frequency relationships show through despite
the encryption. The analysis techniques explained in the following chapters make
repeated use of these frequency relationships. In particular, you should remember
the high frequency letters, ETNROAIS, and the low frequency letters, JKQXZ, for
their repeated application. The word SENORITA, which includes the high fre-
quency letters is one way to remember them. Some people prefer to remember the
pronounceable ETNORIAS as a close approximation of the descending frequency
order. Choose the method you prefer. The high frequency letters are referred to fre-
quently.

b. Just as single letters have typical frequency expectations, multiple letter combina-
tions occur with varying, but predictable frequencies, too. The most common pair
of letters, or digraph, is EN. After EN, RE and ER are the most common digraphs.
There are 676 different possible digraphs in English, but the most common 18 make
up 25 percent of the language. Appendix A lists the expected frequencies of English
language digraphs. Some cryptographic systems do not let individual letter fre-
quencies show through the encryption, but let digraphic frequencies come through.
The systems explained in Part Three of this manual show this characteristic.

c. Appendixes B and C list frequency expectations for sets of three letters (trigraphs)
and four letters (tetragraphs). Each of these can be useful when studying cryp-
tograms in which three and four letter repeated segments of text occur.

d. Repeated segments of two to four letters will often occur because they are common
letter combinations, whether or not they are complete words by themselves. Longer
repeated segments readily occur when words and phrases are reused in plaintext.
When words are reused in plaintext, they may or may not show up as repeated seg-
ments in ciphertext. For a word to show through as a repeat in ciphertext, the same
keys must be applied to the same plaintext more than once. Even complex systems
which keep changing keys will sometimes apply the same keys to the same plain-
text and a repeated ciphertext segment will result. Finding such repeats gives many
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clues to the type of system and to the plaintext itself. The search can extend beyond
single messages to all messages that you believe may have been encrypted with the
same set of keys. If computer support is available to search for repeats for you, a
great deal of time can be saved. If not, time spent scanning text to search for
repeats will reward you for your time when you find them.

2-9. Unilateral Frequency Distribution

The most basic aid to identification and solution of cipher systems is the unilateral
frequency distribution. The term unilateral means one letter at a time. A unilateral
frequency distribution is a count of all the letters in selected text, taken one letter at a
time.

a. The customary method of taking the distribution is to write the letters A through Z
horizontally and mark each letter of the cryptogram with a dash above or below the
appropriate letter. Proceed through the message from the first letter to the last,
marking each letter in the distribution. Avoid the alternate method of counting all
the As, Bs, Cs, and so forth, which is very subject to errors. For convenience, each
group of five is crossed off by a diagonal slash. The unilateral frequency distribution
for the first sentence in this paragraph is shown below.

For comparison, the next example shows the frequency count for the fourth and
fifth sentences in paragraph 2-9a.

b. Although individual letter frequencies differ, the pattern of high and low frequency
letters is quite similar. The letters that stand above the others in each tally are,
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with few exceptions, the expected high frequency letters—ETNROAIS. The expec-
ted low frequency letters, JKQXZ, occur once or twice at most. Even in as small a
sample as one or two sentences, expected patterns of usage start to establish them-
selves. Compare this to a frequency count of all letters in this paragraph.

c. When a larger sample is taken, such as the above paragraph, the letters occur much
closer to the expected frequency order of ETNROAIS. As expected, E and T are the
two highest frequency letters. but the next series of high frequency letters in
descending order of occurrence, ASRINO, differs slightly from the expected order of
NROAIS. It would take a sample thousands of letters long to produce frequencies
exactly in the expected order. Even then, differences in writing style between a field
manual and military message texts could produce frequency differences. For exam-
ple, the word the is often omitted from military message traffic for the sake of
brevity. More frequent use of the raises the expected frequency of the letter H.
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2-10. Letter Frequencies in Cryptograms
As different cipher systems are explained in this manual, the ways in which letter
frequencies can be used to aid identification and solution will be shown. Some basic
considerations should be understood now.

a. In transposition systems, the letter frequencies of a cryptogram will be identical to
that of the plaintext. A cryptogram in which the ciphertext letters occur with the
expected frequency of plaintext will usually be enciphered by a transposition
system.

b. In the simplest substitution systems, each plaintext letter has one ciphertext
equivalent. The ciphertext letter frequencies will not be identical to the plaintext
frequencies, but the same numbers will be present in the frequency count as a
whole. For example, if there are 33 Es in the plaintext of a message, and if E is
enciphered by the letter K, then 33 Ks will appear in the ciphertext frequency
count.

c. More complex substitution cipher systems, such as the polyalphabetic systems in
Part Four of this manual, will keep changing the equivalents. E might be
enciphered by a K the first time it occurs and by different cipher letters each time it
recurs. This will produce a very different looking frequency count.

d. To illustrate the differences in appearance of frequency counts for different types of
systems, examine the four frequency counts in Figure 2-1. Each one is a frequency
count of the message listed above it. The four messages are different, but each has
the same plaintext. The first shows the plaintext and its frequency count. The
second shows the frequencies of the same message enciphered by a transposition
system. The third shows a simple substitution system encipherment. The fourth
shows a polyalphabetic substitution encipherment.

2-11.  Roughness
The four examples in Figure 2-1 show another characteristic of frequency counts which
is useful in system identification. The first three distributions all contain the same let-
ter frequencies. In the first two, the plaintext and the transposition examples, there are
16 Es. In the third, where E has been replaced by W, there are 16 Ws. Where there were
9 As, there are now 9 Ls. Where there was 1 K, there is now 1 C. The first three dis-
tributions show the same wide differences between the highest frequency letters and
the lowest. The fourth distribution is very different. The distribution lacks the wide
differences between the highest and lowest frequency letters. Where the first three
showed distinct highs and lows, or peaks and troughs, in the distributions, the fourth is
relatively flat.

a. Frequency counts which show the same degree of difference between peaks and
troughs as plaintext are considered to be rough distributions. Systems which sup-
press the peaks and troughs of plaintext letters by changing their equivalents
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produce flatter distributions. If letters were selected randomly from the 26 letters of
the English alphabet, the resulting distribution would look very much like the
fourth example. Random selection will not produce a perfectly level distribution,
but it will appear quite flat in comparison to plaintext.
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b. The simplest substitution systems tend to produce rough distributions. The most
secure tend to produce flat distributions. Many other systems tend to fall in
between. You can use the degree of roughness as one of the aids to system iden-
tification.

2-12. Coincidence Tests
Judging whether a given frequency distribution has the same degree of roughness as
plaintext or random text is not easy to do by eye alone. To help you make this deter-
mination, a number of statistical tests have been developed for your use. The tests are
based in probability theory, but you can use the tests whether or not you understand
the underlying theories. The most common tests are called coincidence tests.

a.

b.

c.

d.

If you pick any two letters from a message, compare them together, and they hap-
pen to be the same letter, they are said to coincide. A comparison of the same
letters, for example, two As is a coincidence. This comparison can be made of
single letters or pairs of letters or longer strings of letters.

If you compare two single letters selected at random from the English alphabet, the
probability of their being the same is 1 in 26. One divided by 26 is .0385. Expressed
as a percentage, 1/26 is slightly less than 4 percent. You would expect to find a coin-
cidence 3.85 times on the average in every 100 comparisons.

If you select two letters from English plaintext, however, the probability of their
being the same is higher than 1 in 26. Frequency studies have shown that the
probability of a coincidence in English plaintext is .0667. In other words, in every
100 comparisons, you would expect to find 6.67 coincidences in plaintext. Each
language has its own probabilities, but similar traits occur in each alphabetic
language.

Different coincidence tests use different methods of comparing letters with each
other, but each rests on the probabilities of random and plaintext comparisons. The
actual number of coincidences in a cryptogram can be compared with the random
and plaintext probabilities to help make judgments about the cryptogram.

2-13. Index of Coincidence

A common way of expressing the results of a coincidence test is the index of
coincidence (XC). The index of coincidence is the ratio of observed coincidences to the
number expected in a random distribution. For plaintext, the expected index of
coincidence for single letters in English is the ratio of .0667 to .0385, which is 1.73.
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2-14. Monographic Phi Test
The most common coincidence test is the monographic phi test, which provides a
mathematical way of measuring the roughness of a frequency count. Monographic is a
fancy synonym for one letter. The term monographic distinguishes the test from the
digraphic phi test, performed on two letter pairs, and other forms of the phi test. Phi is
the English spelling of the Greek letter φ. The monographic phi test is based on the
coincidence probabilities that occur when every letter in a cryptogram is compared
with every other letter in the cryptogram.

a. Fortunately, the phi test can be calculated without actually comparing every letter
with every other letter. Both the total number of comparisons and the total number
of coincidences can be calculated from the frequency count.

b. The total number of comparisons when every letter is compared with every other
letter is the total number of letters multiplied by the total number minus one.
Expressed as a formula, it looks like this–

Comparisons = N (N – 1).

c. Since one out of every 26 comparisons in a random distribution is expected to be a
coincidence, the formula for the expected random value of phi is as follows:

d. The expected value for plaintext coincidences is–

e. Just as the total number of comparisons is N (N – 1), the total number of coin-
cidences for each letter is f (f – 1), where f is the frequency of the individual letter.
The total number of coincidences is the sum of the coincidences for all the letters.
The total number of coincidences is labeled phi observed or øo, and can be
expressed as either–

(The Greek letter sigma (Σ) is used to mean sum of.)
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f. To calculate φ o, take each letter frequency greater than 1 and multiply it times the
frequency minus 1, as the formula suggests. (You can ignore letters with a frequency
of 1, because they will be multiplied by 0.) Then add the results of all the
multiplications.

g. The index of coincidence for the phi test is called the delta IC. The delta IC is the
ratio of phi observed to phi random. It can be expressed using the Greek letter delta
(∆).

h. The results of a phi test can be expressed in terms of φ o, φ p, and or as the ∆ IC.
Where computer support is available to perform the calculations, the  ∆ IC is the
form usually shown. Where paper and pencil methods are used, either form may be
used. Both methods are shown in the next example.

2-15. Interpreting the Phi Test
The previous example showed results close to the expected value for plaintext. This
indicates the frequency count it was based on had the same approximate degree of
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roughness as expected for plaintext. It does not show that it was plaintext or that it
was enciphered in a simple substitution system, although the latter is possible. It must
be considered as just one piece of evidence in deciding what system was used.

a. In plaintext of 50 to 200 letters, the delta IC will usually fall between 1.50 and 2.00.
Shorter text can vary more, and longer text will be consistently closer to 1.73. Since
simple monoalphabetic systems have the same frequency distribution as plaintext,
these simple systems follow the same guidelines as plaintext.

b. Random text centers around a   IC of 1.00 but is subject to the same variability as
plaintext. Small samples of under 50 letters vary widely. Samples in the 50 to 200
letter range will usually fall between 0.75 and 1.25. Larger samples approach 1.00
more consistently.

c. Polyalphabetic systems tend to resemble random text, and the more different
alphabets that are used, the more likely the ∆ IC is to approach 1.00.

d. The four frequency counts in Figure 2-1 follow these guidelines closely. Each one is
100 letters long. The first three, the plaintext, the transposed text, and the simple
monoalphabetic substitution each have a  ∆ IC of 2.00. The fourth example, the
polyalphabetic substitution example, has a  ∆ IC of 1.05. The system used in the
example has 26 different alphabets, and the underlying plaintext frequencies have
been thoroughly suppressed.
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P A R T  T W O

Monographic  Subst i tut ion  Systems

CHAPTER 3

MONOALPHABETIC UNILATERAL SUBSTITUTION
SYSTEMS USING STANDARD

CIPHER ALPHABETS

Section I

Basis of Substitution Systems

3-1. Substitution Systems

The study of analysis of substitution systems begins with the simplest of systems. The
systems explained in Part Two are monographic substitution systems. The systems in
Chapters 3 and 4 are further categorized as monoalphabetic unilateral substitution
systems.

a.

b.

c.

d.

Both monographic and unilateral mean one letter by their construction. The
prefixes mono- and uni- mean one, and graphic and literal refer to letters or other
characters. Monographic systems are those in which one plaintext letter at a time is
encrypted. Unilateral systems are those in which the ciphertext value is always one
character long. Note that the term monographic refers to single plaintext letters
and the term unilateral refers to single ciphertext letters.

Monoalphabetic systems are those in which a given ciphertext value always equals
the same plaintext value. One alphabet is used. “

Chapter 5 deals with monoalphabetic multilateral systems, which substitute more
than one ciphertext character for each plaintext character. Later parts of this
manual present the analysis of polygraphic and polyalphabetic systems.
Polygraphic systems substitute values for more than one plaintext letter at a time.
In polyalphabetic systems, a given ciphertext character will have different plaintext
equivalents at different times through the use of multiple alphabets.

The techniques used with these simplest of systems carry over to the more com-
plicated systems. Whether or not you will ever see the very simple systems in use,
the same skills are used in combination with other techniques to solve more secure
systems as well.
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3-2. Nature of Alphabets
A cipher alphabet lists all the plaintext values to be enciphered paired with their
ciphertext equivalents. Cipher alphabets can take many different forms from a simple
listing of 26 letters with 26 equivalent letters to much more complex charts. Chapters 3
and 4 deal with the simple 26 letter for 26 letter types and Chapter 5 introduces some of
the more complex chart type multilateral systems.

a. The simple 26 letter for 26 letter cipher alphabets are composed of two sequences of
letters: the plain component sequence and the cipher component sequence. The
letter sequences can be in standard A through Z order, systematically mixed order,
or randomly sequenced. Alphabets are classed as standard, mixed, or random
according to the types of sequences they contain. The techniques used to solve the
system depend to some extent on the type of alphabet. Alphabets in which both
components are standard A through Z sequences are called standard alphabets.

b. A standard sequence does not have to be written beginning with A and ending with
Z. A sequence is considered to have no beginning or ending, but continues as if it
were written in a circle. The letter that follows Z in a standard sequence is A. Each
of the following examples is a standard sequence.

c.  If the alphabetic progression is in the normal left to right order, it is called a direct
standard sequence. If the alphabetic progression proceeds from right to left, it is
called a reverse standard sequence. Each of the following examples is a reverse stan-
dard sequence.

d. Standard alphabets are also classed as direct or reverse. If the two standard
sequences (plaintext and ciphertext) run in the same direction, the alphabet is
called a direct standard alphabet. Each of the following alphabets is a direct stan-
dard alphabet. Notice that the second one has the identical equivalents to the first
and can be rewritten in left to right order without changing its substitution at all.
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e. If the two standard sequences (plaintext and ciphertext) run in opposite directions,
the alphabet is called a reverse standard alphabet. Notice that the two following
examples of reverse standard alphabets are also equivalent.

f.  An alphabet, in which the plain component is shown in A through Z order, is called
an enciphering alphabet. The first alphabet after paragraph 3-2e is an enciphering
alphabet. If the cipher component is in A through Z order, it is called a deciphering
alphabet. The second alphabet is a deciphering alphabet.

g. Standard alphabet cryptograms are the easiest to solve. The rest of Chapter 3
explains the techniques of cryptography and cryptanalysts of standard
monoalphabetic ciphers.

Section II
Monoalphabetic Unilateral Substitution

3-3. Cryptography
The users of a monoalphabetic unilateral substitution system must know three things
about the keys to the system. They must know what sequence of letters is used for the
plain component, what sequence is used for the cipher component, and how the two
components line up with each other. The alignment is termed the specific key.
Whatever keys are put into use by the originating cryptographer must be known by the
receiving cryptographer, too. The key selection must either be prearranged or sent
along with the cryptogram itself.
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a. Prearranged keys are normally included in published operating instructions, known
variously as the Signal Operation Instructions (S0I) or Communications-
Electronics Operation Instructions (CEOI). For example, an SOI might specify the
use of direct standard sequences for an extended period and a new alignment of the
two sequences at regular shorter intervals. A portion of an SOI might look like this
example.

Another way to provide exactly the same information in a more abbreviated form is
shown below.

31 May 1989

Plain component: Direct standard sequence.
Cipher component: Reverse standard sequence.

In this example, the alphabet construction is left to the cryptographer, who writes
out the sequences and aligns them with each other according to the specific keys for
each key period.

b. Transmitted keys are used whenever the cryptographer is given some choice of the
specific key selections. For example, if the alignment of the sequences were left to
the cryptographer, the alignment would need to be transmitted. One way to do this
is to agree that the first group of the message is always the cipher equivalent of
plaintext A repeated five times. This group then tells the receiving cryptographer
how to align the alphabet. The example is simple, but more complex systems can
be used for greater security.
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3-4. Message Preparation
The cryptographer normally prepares a message for encryption by writing the plain-
text in regular length groups. Four or five letter groups are common for this type of
system.

a. Word lengths are not preserved normally, because they provide strong clues to the
plaintext when they appear. It is easier for a cryptanalyst to figure out the plaintext
for example 1 in Figure 3-1 than example 2.

b. In writing out the message for encipherment with a simple system, any numbers in
the text must be spelled out or left in the clear. Punctuation must be spelled out or
omitted. At the end of sentences, PD or STOP is often used in English. Commas are
replaced by COMMA or CMA.

c. Whenever the text does not break evenly into groups, the text will generally be pad-
ded to fill out the groups. The filler letters are usually added at the end of the last
group. For clarity, they are often just a repeated low frequency letter such as X or Z.
The above cryptogram, broken into five letter groups, appears below.

3-5



Section III

Solution of Monoalphabetic Unilateral
Ciphers Using Standard Cipher Alphabets

3-5. Methods of Solution
Because of the extreme simplicity of standard alphabets, cryptograms enciphered with
them can always be solved. There are two general approaches to solving these simple
ciphers. One makes use of the frequency characteristics discussed in Chapter 2. The
other uses the orderly progression of the alphabet to generate all possible decipher-
ments from which you can pick the correct plaintext. Each method is explained in the
following paragraphs.

3-6. Frequency Matching
The first approach consists of matching expected plaintext letter frequencies with the
observed ciphertext letter frequencies.

a.

b.

c.

As explained in Chapter 2, monoalphabetic unilateral ciphers preserve exactly the
same letter frequencies as found in plaintext. The frequencies occur with the cipher
equivalents, not the plaintext letters, but the numbers are unchanged. If E was the
most common plaintext letter in a cryptogram, then E’s replacement will be the
highest frequency ciphertext letter.

With standard alphabets, another characteristic is preserved in addition to the
individual letter frequencies. The order of highs and lows is also preserved. With a
direct standard alphabet, the pattern of peaks and troughs remains, although
shifted to the right or left. With a reverse standard alphabet, the pattern also
remains, but it runs in the opposite direction. Figure 3-2 illustrates the expected
frequency distribution of 100 letters of plaintext. It then shows what happens to the
distribution when it is enciphered by a direct and a reverse standard alphabet.

As shown in Figure 3-2, there are several recognizable patterns in plaintext. First is
the three peak pattern formed by the letters A through I. The pattern is a peak (A),
a three letter trough (BCD), a peak (E), a three letter trough (FGH), and a peak (I).
The second easy to recognize pattern is formed by the letters N through T. The
pattern is a double peak (NO), a trough (PQ), and a triple peak (RST). When you
compare the plaintext distribution with the two ciphertext distributions, the pat-
terns are still evident.

3 - 6



d. Not all plaintext frequency distributions show the patterns clearly. The examples
in Figure 3-2 show a perfect 100 character frequency distribution with every letter
appearing exactly as many times as expected. Actual frequency counts will vary
considerably, particularly with small samples. It is easier to recognize the overall
patterns by their frequency than it is to recognize individual letters, however. If you
can recognize even a partial pattern, it is easy to write the whole alphabet and see if
the frequencies are close to expectations. Consider the cryptogram shown below.
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The four Xs at the end are almost certainly fillers, so they are not counted. The
cryptogram is too short for the complete pattern to appear. The cluster of higher
frequency letters from C through I could represent the N through T pattern,
though. We will write the full sequence of letters on that assumption.

The frequency match fits the plaintext letters reasonably well. E does not appear at
all, but other vowels make up for it, keeping the vowels near the expected 40 per-
cent. No low frequency letters appear with unexpectedly high frequency. The con-
firmation of the match occurs when the alphabet is tried with the cryptogram.

e. This method depends on knowing or suspecting that standard alphabets are used.
With a long message, the frequency count will usually make it obvious. The A-E-I
and the NO-RST peaks will stand out. With a short message like the above exam-
ple, it is not obvious, but it is an easy step to try if you think you spot a partial
match.

3-7. Generating All Possible Solutions
The frequency matching technique only works if the text is long enough to produce a
recognizable frequency count. A second technique always leads to the solution. With a
known standard alphabet, there are only 26 different ways the alphabet can be
aligned. It does not take very long to try all 26 settings to find the correct solution.

a. As an example, consider the solution of the following cryptogram.

With no repeated letters, frequency matching is not likely to help. Suppose the
alphabet was a direct standard with p:a=c: Z.
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Using the above alphabet, SIZUX VJFLK deciphers as TJAVY WKGML. Obviously,
this is not the correct plaintext. The text the trial decipherment produces is called
pseudoplaintext or pseudotext. Suppose the alphabet used p:a=c:Y.

This alphabet produces
The next alphabet with p:a=c:X gives the text
The next alphabet with p:a=c:W gives the text
The next alphabet with p:a=c:v gives the text

Clearly, not one of these is the correct setting, but notice the effect of trying each
alphabet in turn. The columns of letters from each successive trial alphabet are in
alphabetical order. You can achieve the same effect as trying each alphabet in turn
by listing the letters vertically in alphabetical order. Figure 3-3 lists the results of
trying all possible alphabets.
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The plaintext, BRIDGES OUT, appears about halfway down the columns. In prac-
tice, you would only write enough to recognize the plaintext. Generally, write a
column at a time, and only write as many columns as you need. Once you have spot-
ted plaintext, set up the alphabet and complete the decipherment.

b. With a reverse standard alphabet, another step must be added. You cannot
generate the columns until you try deciphering first at any alphabet setting of your
choice. Then generate the columns starting with your trial decipherment. As you
will see in the following chapters, this technique can be used with any known
alphabets, not just standard ones. The procedures, which will be illustrated in
Chapter 4, are—

Set up the known alphabet at any alignment.
Perform a trial decipherment to produce pseudotext.
Using the trial decipherment as the letters at the head of the columns, generate
all possible decipherment by listing the plain component sequence vertically
for each column.

3 - 1 0



CHAPTER 4

MONOALPHABETIC UNILATERAL SUBSTITUTION
SYSTEMS USING MIXED

CIPHER ALPHABETS

Section I
Generation and Use of Mixed Cipher

Alphabets

4-1. Mixed Cipher Alphabets

Mixed cipher alphabets differ from standard alphabets in that one or both sequences
are mixed sequences. A mixed sequence is any sequence not in normal alphabetical
order. The two main types of mixed sequences are systematically mixed and random
mixed sequences.

a.

b.

Systematically mixed sequences are produced by an orderly process based on easily
remembered keywords, phrases, or simple rules. There are a number of mixed
sequence types, which will be explained in this section. Their advantage is that the
keys can be easily memorized and reconstructed for use when needed. Their disad-
vantage is that the orderliness in construction can be used by the opposing
cryptanalyst to aid in their recovery.

Random mixed sequences are not based on any orderly generation process. They
can be produced by various means ranging from pulling the 26 letters out of a hat to
complex machine generation. Their advantage is that their structure offers no help
to the opposing cryptanalyst. Their disadvantage is that the keys cannot be
memorized easily or produced from simple directions as systematically mixed
sequences can. They must be printed out in full and supplied to every user.
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4-2. Keyword Mixed Sequences
One of the simplest types of systematic sequences is the keyword mixed sequence. The
sequence begins with the keyword, which may be a word or a phrase. Any letters
repeated in the keyword are used only once, dropping the repeating letters. After the
keyword, the rest of the letters are listed in alphabetic order, omitting those already
used.

Keyword— CRYPTOGRAPHIC

Repeated letters dropped: CRYPTOGAHI

Remaining letters added in normal order:

CRYPTOGAHIBDEFJKLMNQSUVWXZ

Keyword— MILITARY INTELLIGENCE

Repeated letters dropped: MILTARYNEGC

Remaining letters added in normal order:

MILTARYNEGCBDFHJKOPQSUVWXZ

4-3. Transposition Mixed Sequences
Transposition mixed sequences are produced by writing a letter sequence into a matrix
and extracting it from the matrix by a different route. The most common types are
called simple columnar, numerically keyed columnar, and route transposition
sequences.

a. Simple columnar transposition is usually based on a keyword mixed sequence. The
keyword determines the width of the matrix that is used. The keyword is written as
the first row of a matrix and the rest of the sequence is written beneath it, taking as
many rows as necessary. The transposition mixed sequence is then produced by
extracting the columns of the matrix from left to right.
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Keyword— ARTILLERY Keyword– MORTAR

Keyword mixed sequence in matrix:

Resulting sequence:

ABKURCMVTDNWIFOXLGPZEHQYJS

Keyword mixed sequence in matrix:

Resulting sequence:

MBGLUZOCHNVRDIPWTEJQXAFKSY

b. The numerically keyed columnar transposition mixed sequence differs from the
simple columnar only in the way it is extracted from the matrix. Instead of
extracting the columns left to right, the order of the columns is determined by a
numerical key based on the keyword. After constructing the matrix, the letters in
the keyword are numbered alphabetically. The columns are then extracted
according to the resulting numerical key.

Keyword– CALIFORNIA

Resulting sequence:

ADQZCBPYFHUIGTLESNMXOJVRKW

Keyword– VERMONT

Resulting sequence:

EBJWMDLYNGQOFPZRCKXTHSVAIU
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c. Route transposition sequences are formed by any other systematic way of entering
sequences into a matrix and extracting them from a matrix. They can be based on
standard or keyword mixed sequences. The samples in Figure 4-1 show some of the
common routes that can be used. The last two omit the letter J for the convenience
of a square matrix.
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4-4. Decimation Mixed Sequences
Decimation mixed sequences are produced from a standard or keyword mixed
sequence by counting off letters at a regular interval.

a. As an example, consider decimating a standard sequence at an interval of 3. The
new sequence begins with the first letter of the basic sequence, in this case, A. The
second letter of the new sequence is the third letter that follows from the basic
sequence, D. Every third letter is selected until the end of the basic sequence is
reached.

Basic sequence:

Resulting decimated sequence:

The count then continues as if the sequence were written in a circle. The next letter
after Y, skipping Z and A, is B. The complete resulting sequence is shown below.

b. The interval should have no common factors with the length of the sequence. Since
any even number has a common factor of 2 with 26, only odd numbers are selected
with 26 letter sequences. Intervals with common factors are not selected, because
the count will return to the starting point again before all the letters are used. The
interval should also be less than half the length of the sequence, because larger
numbers will just duplicate in reverse order the sequence produced by a smaller
number. An interval of 23, for example would produce the same sequence as an
interval of 3, but in the reverse order. For a 26 letter sequence, the only usable inter-
vals are 3, 5, 7, 9, and 11. By counting either left to right or right to left, all the basic
decimated sequences can be produced.

c. Study of this method of decimation is particularly significant, because the solution
of some types of polyalphabetic ciphers can yield sequences in a decimated order
instead of the original order.

d. An alternate method of decimation is occasionally encountered. In the alternate
method, each letter is crossed off as it is selected and that letter is not counted
again. The restrictions on intervals do not apply to this method, because the
starting letter can never be reached again. This method is used less, because it is
subject to mistakes in the counting process that are hard to detect and correct.
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4-5. Types of Mixed Cipher Alphabets
As mentioned at the beginning of this section, a mixed alphabet is any alphabet that
uses one or more mixed sequences. The simplest types are those which use a standard
sequence in one component and a mixed sequence in the other. These are the easiest
for a cryptanalyst to reconstruct. Next in order of difficulty are those in which the
same mixed sequence is used in the plain and cipher components. Most difficult are
those in which two different mixed sequences are used. The next section shows how to
recover each of these types of alphabets.

Section II
Recovery of Mixed Cipher Alphabets

4-6. Alphabet and Plaintext Recovery
Although this manual separates the techniques of alphabet recovery from plaintext
recovery, the two processes will usually occur simultaneously, each supporting the
other. When an orderly structure is found in an alphabet as individual letters are
recovered, the orderly structure often helps make more plaintext recoveries. The
techniques explained in this section will be used in the next section.

a. You usually begin reconstruction by recording recoveries in the form of an enci-
phering alphabet. An enciphering alphabet is one in which the plaintext component
is arranged in A through Z order. Ciphertext letters are written in the cipher compo-
nent paired with their plaintext equivalents in the plain component. The plaintext
can be either the top or bottom letters, but whichever you select, you should follow
it consistently in the alphabet as well as the cryptogram. Inconsistency leads to

b.

errors. In this manual, plaintext is placed above ciphertext.

A deciphering alphabet is one in
order. Rearranging the alphabet
alphabet recovery.

which the ciphertext is written in A through Z
into deciphering order is sometimes helpful in

c. Whenever systematically mixed alphabets are used, you should attempt to recover
the systems and keys in use. The same sequences are often reused, either at dif-
ferent alignments of the same alphabet or in combination with other sequences. The
solution can be reached much quicker when you recognize and take advantage of
previous recoveries.
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4-7. Reconstruction of Alphabets With One
Standard Sequence
Whenever one of the two sequences is a standard sequence, recovery of the system used
to produce the other sequence is made much easier.

a. The easiest type to recognize is the keyword mixed sequence. Any keyword mixed
sequence has two parts—the keyword and the alphabetic progression. If you find
that recovered letters are falling in alphabetic progression consistently in a portion
of the sequence, it is probably a keyword mixed sequence. In this case, you can
narrow down the possibilities of unrecovered letters. Consider the following par-
tially recovered alphabet.

(1) The letters DFGI appear to be part of the alphabet section of the cipher
sequence. The alphabetic progression continues at the left with the letters S
and Z. All the other recovered letters appear to be part of the keyword. Between
the H and the D there is room for only two of the letters at the beginning of the
alphabet—A, B, and C. At least one of these must be in the keyword, leaving
the other two as probable equivalents of plaintext P and Q. Similarly, there is
space for only three letters between S and Z. T and V already appear, so the
spaces must be filled by three of the four letters, U, W, X, and Y. Given these
limitations, recovery of more plaintext is likely. Continuing the example, con-
sider that plaintext C, F, L, P, W, and Y are recovered next.

(2) These recoveries enable several more probable letters to be placed by
alphabetical progression.

(3)  At this point, we can see that A and E must be in the keyword, because there is
no room for them in the alphabetic progression. U or W must be in the keyword,
because there is only room for one of them between S and X, and V is already
placed. Similarly, M or N and Q or R must be in the keyword. Q is unlikely,
even though U is available to pair with it. Placing Q and U anywhere in the
blanks in the keyword suggests nothing further. R must be in the keyword, then.

(4) The letter after L in the keyword must certainly be a vowel or the keyword
would be unpronounceable, and that vowel represents plaintext G. With the
possibilities narrowed down this far, you might be able to spot the keyword
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b.

c.

without referring back to the cryptogram that produced the partially recovered
alphabet. The complete alphabet looks like this.

Recovery of decimated sequences is a straightforward process of trying out inter-
vals. Just as a decimated sequence is produced by counting at a regular interval,
the original sequence can be recovered by counting at a regular interval, too. A par-
tially recovered alphabet with a suspected decimated sequence in the cipher com-
ponent could look like this example.

(1) To determine if this is a decimated sequence, various intervals can be tried.

(2)

The recovered letters suggest one obvious possibility. The letters V, W, and X
all appear among the recovered letters. If they were in order in the base
sequence used to generate the decimated sequence, they should reveal the in-
terval. The interval from V to W and from W to X is -5 in each case. A trial
decimation at -5, beginning with V produces the following sequence.

This sequence of letters appears to be a keyword mixed sequence. The keyword
appears after the VWX and alphabetic progression resumes with the F and the
KM. Once you recognize this structure, you can use it to assist in further plain-
text recoveries just as in the first example shown in paragraph 4-7a. The original
basic sequence used to produce the decimated sequence is shown below.

Simple transposition mixed sequences often resemble decimated sequences. You
will often see a regular spacing of adjacent low frequency letters, just as we saw
VWX in the previous example. This is not caused by a decimation interval, but by
the regular length of columns separating the letters. Recovery of the generation
method of transposition mixed sequences is accomplished by rebuilding the original
matrix.
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The almost regular spacing of the letters V, X, Y, and Z resembles a decimated
sequence, but the interval is not constant. This almost, but not quite, regular
spacing is an indication of simple columnar transposition. The letters V, X, Y, and
Z are probably the bottom letters in their columns of the original matrix. W, which
has not been recovered, probably occurs in the keyword, because there does not ap-
pear to be room for a column ending with W. Analysis of this type of sequence
proceeds by rebuilding the columns. Placing the letters V, X, Y, and Z in sequence
with their preceding letters as their columns, produces this partial result.

Now the initial reconstruction appears successful. The rows above VXYZ also show
alphabetic progression developing. Q can be inserted in the next to last row with
confidence. The next step is to place the rest of the letters into columns that would
continue the structure in a logical way. A little trial and error will show that the
columns before the V column end with T and U. The U was not the top of the V
column, but the bottom of the preceding column.
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d.

The longer columns belong on the left. Shifting these columns produces this result.

The matrix is now in its original form. L, M, and N can be placed between K and O.
Either H or J can be inserted between F and K and the remaining letter belongs in
the keyword in the top row. S and W are in the keyword, because they are missing
from the alphabetical progression. That leaves A, B, or C for the remaining letter of
the keyword, with the other two on the second row. Since only one vowel has been
found in the keyword up until now, A probably belongs in the keyword with B and C
filling the blanks in the second row. Trial placements of A, S, and W together in the
first row blanks, together with either H or J in the remaining space leads to the con-
clusion of JIGSAW as the keyword.

The recovery of numerically keyed columnar transposition sequences is the same as
for simple columnar transposition, except the columns are not in order in the
sequence. The next example shows the recovery of this kind of transposition mixed
sequence.

This problem is again best approached through the end of alphabet letters. V, W,
X, Y, and Z have all been recovered, and they make a good starting point. V, W, X,
Y, and Z are placed in a row with their preceding letters above them in columns.
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This time no alphabetic progression appears, even if we consider that one or two of
the columns might be misplaced. In this case, the next thing to consider is that the
sequence may be reversed. Selecting the letters to the right of V, W, X, Y, and Z
instead of the left produces the following example.

This setup is clearly correct. Next, we add the two short remaining segments.
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Moving the short columns to the right and filling in the missing letters produces the
following matrix.

The final step is to recover the numerical key. If normal methods are used, it should
be produced by the keyword and should show the actual order in which the columns
were extracted. Numbering the letters in the keyword in alphabetical order and
comparing them with the cipher sequence in the alphabet confirms that this
method was used. Since the sequence was reversed, the order of columns in the
cipher sequence appears in right to left order beginning with the cipher letter B.

e. One type of transposition sequence remains to be considered. When a route
transposition process is used, the solution is to try to reconstruct the original routes.
In examining attempts to solve the matrix by rebuilding columns, be alert to entry
routes other than by rows. Look for spirals, diagonals, and alternate horizontals or
verticals. If rebuilding the columns produces no results, consider rebuilding spiral,
diagonal, or alternate row or column routes. This manual does not show examples of
these approaches, but if you encounter this situation, approach it logically and try
various approaches until one succeeds. The techniques of solving route transposi-
tion ciphers explained later in this manual will help in this process.
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f. Each of the preceding examples was approached as if we knew, perhaps from past
history, what types of sequences were used. We assumed that the plain component
was a standard sequence, and the cipher sequence could then be readily reconstruc-
ted by itself. It is common, in approaching a cryptanalytic problem, to assume the
simplest case and only to move on to more complex possibilities when the simplest
case must be rejected. A great deal of time can be wasted by assuming something is
more complicated than it is.

g. The next simplest case is where the cipher sequence is a standard sequence and the
plain sequence is mixed. When reconstruction attempts fail because you started
with an enciphering alphabet, rearranging the alphabet into a deciphering alphabet
may yield results. Once rearranged, the solution is approached just as we did in the
above examples. Look for short alphabet progression to indicate keyword mixed
sequences. If that is not found, see if a decimation was used. If decimation was not
used, try reconstructing the columns of a columnar transposition. Remember to try
forward and reversed sequences.

h. If none of these approaches yields results, either with an enciphering alphabet or a
deciphering alphabet, other approaches are called for. Either there are two mixed
sequences, a more complex process was used, or random sequences were used.

4-8. Reconstruction of Alphabets With Two Mixed
Sequences
Recovering alphabet structure when both sequences are mixed is more difficult than
the previous examples. You are much less apt to be successful with only partial
recoveries. Where the alphabet could be reconstructed during the solution of the plain-
text in the previous examples, reconstruction of an alphabet with two mixed sequences
must usually wait for the full solution of the plaintext. The examples in this section
will begin with a fully recovered, but not reconstructed, alphabet.

a. The easiest type to recover with two mixed sequences occurs when both sequences
are keyword mixed, as in the next example.

Enciphering and deciphering forms of the same alphabet are shown. The under-
lined portions show substantial alphabetic progression in both, which is typical of
alphabets with keyword mixed sequences. A transposition or decimation would not
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produce such an obvious progression. The underlined portions in both alphabets are
probably in their original form. The remaining plain-cipher pairs are out of order.
Your task is to reconstruct the original order. The usual approach at this point is to
try to extend the alphabetic progression outward from the obvious progression. In
this case, the enciphering alphabet shows two long alphabetic strings of cipher let-
ters, HIJKLMNO and WXYZ, which must have some or all of the letters
PQRSTUV in between. Similarly, the deciphering alphabet shows plain-
text strings ABCD and STUVWXYZ, and some or all of the letters
EFGHIJKLMNOPQR must be in between. Suppose the cipher letters PQRSTUV
belong in exactly that order. If that is the case, then the plaintext letters
GOMPHER must also be in the right order, preceding ABCD. We expect to find the
keyword immediately before the beginning of the alphabetic sequence.
GOMPHER, while not a recognizable word may be close to it. If we try GOMPHER
as a keyword, then the remaining letters must be in alphabetical order. Adjusting
the alphabet so GOMPHER is a trial keyword will produce this arrangement.

Now the cipher sequence shows a recognizable word, BADGE, but the solution is
incomplete. If we move the M-R pair so that plaintext M fits in alphabetic order
instead of the keyword, we see the following alphabet.

This rearrangement is the original sequence of the alphabet.

b. When transposed or decimated sequences are used in the alphabet, the solution is
much more difficult. The alphabetic progression used in the previous example is
not available to assist with reconstruction. A solution is still possible in many cases,
however. When both sequences are the same sequence in the same direction, the
alphabet can often be recovered quite readily.

(1) Reconstruction begins with a process called chaining. Use the plain-cipher
pairs to create a 26 letter chain by linking the cipher letter of each pair to the
pair with the same plaintext letter. Any pair can be used as the starting point.
Beginning with the plaintext A-ciphertext L pair (abbreviated Ap-Lc) next find
plaintext L. Plaintext L equals ciphertext W (Lp-Wc), producing a partial
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chain of ALW. Continuing with Wp-Bc, the chain is extended to ALWB. Con-
tinue adding links to the chain until you return to the original letter A. The
complete chain is shown below.

(2) Since we were able to produce a 26 letter chain, there is a strong indication that

(3)

(4)

the same sequence was used in both components. With different sequences, the
chances of producing such a chain are very low. Unrelated sequences will almost
always return to the starting point before using all 26 letters. The alphabet in
paragraph 4-8a, for example, produces separate 23 and 3 letter chains.

The sequence produced by chaining an alphabet with two identical sequences in
the same direction will always either be the original sequence or a decimation of
the original sequence. This narrows the possibilities for the original sequence
down to six. The chained sequence and its five possible decimations are listed
below.

If the original sequence was a decimated sequence, the basic keyword or stan-
dard sequence used to generate the decimated sequence would be one of the
above. Since none of them are either standard or keyword mixed, the original
sequence was probably transposed. Approaching each sequence above with
transposition in mind, the letters V, W, X, Y, and Z have been underlined in
each, searching for a basis to rebuild the columns. The last sequence (decima-
tion 11) yields the following matrix.

4 - 1 5



c.

(5) When the same sequence is used in the same direction in both components of
the alphabet, a 26 letter chain will only be produced half of the time. When the
two sequences are staggered by an odd number of letters, a 26 letter chain
results. When the two sequences are staggered by an even number of letters, two
separate 13 letter chains result. These can sometimes be recovered, too, but the
solution is more difficult.

The chaining technique can also be used with alphabets with different sequences in
the two components if they are reused at different alignments. Consider the next
two alphabets, recovered at different times on the same day.

(1) To test if the same alphabet was used, chain the cipher sequences against each
other. In the example, chain A of the first to T of the second, T of the first to N
of the second, and so on. This produces the following chain.

(2)

(3)

This confirms that the two alphabets used the same sequences at different
alignments. If chaining produced anything but one 26 letter sequence or two 13
letter sequences, they are not the same alphabet.

Write all possible decimations, as before.

4 - 1 6



(4)

(5)

The decimation of 7 produces a sequence that almost looks as if it were the
original. This can happen when the decimation interval and the column length
of a transposed sequence are the same except for one long column. The correct
sequence is a decimation of 9 read in reverse.

The sequence used to generate the simply transposed sequence was a keyword
mixed sequence based on LEMON.

The plaintext component can be reconstructed now that the correct ciphertext
sequence is known. We start with the decimated sequence. Since the sequence
with a decimation of 9 was used in reverse to recover the keyword LEMON, we
will list it in reverse.

Either of the two alphabets given at the start of this problem can be used to
reconstruct the plaintext sequence. The first alphabet is repeated for reference.

We now rearrange this alphabet so that the cipher sequence is in the same order
as the recovered decimated sequence.

d. The chaining techniques introduced in this section are also used in the solution of
polyalphabetic ciphers. They will be further developed in Part Four.
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Section III

Solution of Monoalphabetic Unilateral
Ciphers Using Mixed Cipher Alphabets

4-9. Preparation for Analysis

The first step in approaching the unsolved cryptogram is to prepare a worksheet.

a. If prepared by hand, one-fourth inch or one-fifth inch cross section paper (graph
paper) should be used if possible. Hand lettering should be clearly printed in ink.
The cryptogram should be triple spaced vertically to leave room for writing. If a
copying machine is available and local security rules permit, the worksheet should
be copied after preparation to permit a restart with a clean worksheet whenever
needed.

b. Generally, you will want to prepare at least a unilateral frequency count. Other
special frequency counts may be needed also, as will be explained later. If you are
unsure of system identification, you may want to calculate the φ IC. Computer sup-
port, if available, can save a lot of time at this step.

c. Next, you should scan the text searching for repeated segments of ciphertext.
Underline all repeats you find of at least three letters in length. You may find it
useful to underline two letter repeats, too.

d. If you have more than one cryptogram that appears to have been enciphered with
the identical system, prepare a worksheet for each. Compare peaks and troughs of
frequency counts to see if they are similar. If so, look for repeats between messages
as well as within messages. Repeats between messages are another indication that
the identical system was used. The more repeats you find, the easier the solution
will be.

e. If you are still in doubt whether two cryptograms have been enciphered by the same
system, there is a simple statistical test available, similar to the phi test. The chi
test or cross product test compares two frequency distributions to determine the
probability that they are from the same alphabet. The frequency of each letter in
one distribution is multiplied by the frequency of the same letter in the other dis-
tribution. The results of all the multiplications are added to produce the chi value.
Chi is the Greek letter that looks like an X. The formula for the chi value is—
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The expectation with a random match is l/26th of the product of the total letters of
each, or—

With a correct match, the expected value is .0667 times the products of the total
letters, or—

The results can also be expressed as an index of coincidence, the usual form if
produced by computer support. The formula for the cross IC, as it is  called is—

With a correct match, the expected IC value, as with the phi text is 1.73. If you
match two alphabets and the X IC is close to 1.73, the chances are that they were
enciphered with the same alphabet. Figure 4-2 illustrates a completed chi test.
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f. As with any statistical test, you should use this as a guide only, and take all other
available information into consideration, too, For example, if you find several long
repeated segments of text between two cryptograms, it is probably a waste of time to
calculate a chi test by hand. You already have the evidence you need to make a deci-
sion as to what approach you will use to reach a solution.

4-10. Approaches to the Solution

There are two basic approaches to the solution—the probable word method and the
brute force approach. The probable word method is to try to gain a quick entry into the
system by correctly assuming a portion of the plaintext. The brute force approach is to
systematically narrow down the possible keys to the system and then force a solution
by exhaustively trying all those possible keys. The method in the previous chapter of
solving standard alphabet systems through trying all possible decipherment is a good
example of the brute force approach. In practice, the solution of any given system is
likely to use a combination of the two approaches.

4-11. Solution With Known Sequences - Completing
the Plain Component Sequence
When the sequences used in an alphabet are known, a quick forced solution is possible.

a. Although mixed alphabets are used instead of standard ones, the solution is exactly
the same as that explained in paragraph 3-7b.

(1) Set up the known alphabet at any alignment.

(2) Perform a trial decipherment (pseudotext).

(3) Using the trial decipherment as the letters at the head of the columns, generate
all possible decipherment by listing the plain component sequence vertically
for each column.

b. Figure 4-3 illustrates the solution of a cryptogram with known sequences using the
above steps.
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4-12. Probable Word Method
The probable word method of solution depends on your being able to correctly identify
a portion of the plaintext. When you can do this, you can begin to reconstruct the keys.
The partial key recoveries lead to more plaintext recoveries, and by working back and
forth between keys and plaintext, you can complete the solution. There are many ways
in which you can identify plaintext. The more you know about the senders of
enciphered traffic and the situation in which it was sent, the more likely you are to be
able to assume plaintext correctly.

a.  Stereotypes. Military organizations tend to do things in standard ways. Rules for
message formats are likely to be used. Standard forms are likely to be used for
recurring needs. When you learn enough about the sender’s standard ways of doing
things, you can use those standards. Standard formats are most likely to be found
in message beginnings and endings. Messages are likely to begin with addressees,
message subjects, security classifications, and references to other messages.
Messages are likely to end with signatures or unit identifications. These stereotypes
are bad security practices, but difficult to avoid.

(1) Consider the following example of a message where stereotypes can be used to
achieve a quick solution. The previous message from the same sender, already
recovered, began, TWO PART MESSAGE PART ONE. The text gave the
itinerary of a visiting team of officers from an allied country, but was incom-
plete. A mixed alphabet was used with the previous message, but it has
changed with the new message.

(2)

(3)

The first and last groups (ZZZZZ) are obviously not part of the text of the
message. They are probably indicators of some kind.

We begin by preparing the following worksheet with a frequency count and
underlined repeats. The indicator groups are not included in the frequency
count.
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(4) If this is a follow-on to the message that began, TWO PART MESSAGE PART
ONE, we would assume that it would begin TWO PART MESSAGE PART
TWO. The underlined repeats are positioned perfectly for the repeated words
TWO and PART, so the assumption seems well borne out.

(5) Next, we enter the assumed text in the message and the alphabet. Using those
recovered values throughout the message produces the text shown below.

(6) From the recovered ciphertext letters, it appears that the cipher sequence is
keyword mixed. On that basis, ciphertext G and J are placed in alphabetical
order.
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(7) Several possibilities for additional plaintext appear in the message with these
additions. You may see other possibilities but for illustration, we will add the
letters for the word COMMANDING appearing at the end of the message.

(8) Additional placements are possible. Ciphertext Y belongs between X and Z. P
and Q fit between N and S. U, V, and W fit between Sand X. The first word on
the second line appears to be WILL. The phrase SIXTEEN THIRTY HOURS
appears.

Only the ciphertext letters A, B, and C remain to be placed. Of those, only A is
used in the text, and it appears to be part of the commander’s name. If C is
placed as part of the keyword ROCKET and A and B placed in alphabetical
order, the commander’s name becomes R L JONES. The plaintext is TWO
PART MESSAGE PART TWO TEAM WILL DEPART AT SIXTEEN
THIRTY HOURS BY HELICOPTER R L JONES COMMANDING. The com-
plete alphabet is shown below.

4 - 2 4



b. Exploitation of Numbers. Not all cryptograms will include such stereotyped
beginnings and endings. Without these stereotypes, repeated words in the text offer
another possible point of entry. Spelled out numbers are often easy to recognize
when they repeat in messages, as shown in the next example.

(1) The pattern of consecutive short three- to five-letter repeats is characteristic of
numbers. Numbers tend to occur with each other in such things as grid coor-
dinates, times, and quantities. In the above example, the repeated RSZNN
must be THREE, the only five letter number to end in a double letter. We begin
by placing THREE in the alphabet and entering other occurrences of the same
letters.
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(2) The recovered letters suggest additional numbers. RCW, which begins with
plaintext T must be TWO. GNZW, which includes ER as the middle two letters
must be ZERO. EUD, which has no letters in common with THREE, TWO, or
ZERO, can only be SIX.

(3) Several more possibilities can be placed at this point. Ciphertext F can be
placed between D and G in the cipher sequence as the alphabetical structure
begins to appear. The last word of the message is apparently HOURS, needing
only the U to complete it. The partially repeated FOUR can be seen at the end
of line two, and SEVEN follows TWO on the third line.
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(4) The first word is MOVE. Q can be placed between P and S in the cipher
sequence. The word BY completes the third line. With ciphertext K placed from
the word BY, ciphertext L and M can also be placed.

(5) COORDINATES online one provides the plaintext letter A as ciphertext J.
With J placed in the alphabet, the letter I must be in the keyword, along with T,
which will not fit in the alphabetic progression. The keyword is therefore
HOWITZER. The complete plaintext is MOVE YOUR UNIT TO COOR-
DINATES ALPHA TANGO SIX TWO THREE FOUR TWO SEVEN BY
ZERO SIX THREE ZERO HOURS.

c. Word Patterns. When neither stereotypical beginnings and endings nor repeated
numbers provide a point of entry, repeated words can often be recognized by their
patterns of repeated letters.

(1) Such words as ENEMY, ATTACK, and DIVISION have repeated letter pat-
terns that make them easy to recognize. They are even easier to recognize when
the words are repeated in the text. Underlining the repeats gives an indication
of where the words begin and end. For example, ATTACK and BATTALION
have the same pattern of repeated letters. If the ciphertext OGGORF is
repeated in the text, it is much more likely to be ATTACK than a portion of the
word BATTALION. It could also be EFFECT, ATTAIN, or a number of other
possibilities.

(2) In the case where two or more words have identical patterns, such as ATTACK
and EFFECT, letter frequencies can help to decide between the possibilities. If
the letters O and F of OGGORF are high frequency letters and the rest are fairly
low, it is more likely to be EFFECT than ATTACK. If all the letters are high in
frequency, ATTAIN is likely.

(3) Tables have been compiled of common pattern words for various languages to
assist in analysis. Table D-3 in Appendix D of this manual provides an English
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language word pattern table. Word patterns are also called idiomorphs. There is
a formal procedure for recording word patterns, which is followed in the table.
When you find a pattern word repeated in a cryptogram, you can follow the
same procedure to record the pattern and then look it up in the table. The
procedure is this—

Find the first repeated letter in the pattern, and designate all occurrences of
that character with the letter A.

Continue lettering alphabetically from left to right, making sure that each
new character gets the next letter of the alphabet and each repeated charac-
ter gets the same letter.

Stop lettering when the last occurrence of the last repeated character is
reached. In the example, P is the last occurrence of the last repeated charac-
ter. The final character Z is not lettered.

Designate any characters before and after the pattern characters with dashes
to show the length of the word.

(4) To use the pattern, refer to Appendix D, Table D-3. The patterns are in
alphabetical order beginning on page D-19. The pattern ABCDEBFGAF is
located on page D-34. The only word listed for this pattern is H EADQUARTER
S. The extra letters at the beginning and end of the pattern, designated by the
dashes, fit HEADQUARTERS perfectly.

(5) The use of word patterns to solve a cryptogram is shown in the next example.
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(6) The cryptogram shows all repeats longer than three letters. There are a number
of shorter repeats, too, which will be used if necessary. We begin the analysis by
deriving the word patterns for the longer repeats. The pattern and possible
words from Appendix D for each repeat are shown below.
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(7) CROSSROADS is the only choice for the second patten. There is an extra let-
ter at the end of the repeat, but that may have been caused accidentally by a
repeated first letter of the next word in each case. Using CROSSROADS as a
trial starting point, we compare common letters with the other repeats. From
CROSSROADS, we see that cipher M equates to plaintext R, for example.
Examining the possible choices for the MQIATQVG repeat, only REGIMENT
is consistent with the Rp-Mc pair. Similarly, the Op-Uc and Dp-Wc pairs of
CROSSROADS are consistent with DIVISION for the WABANAUV repeat and
no others. The common plaintext N and I between REGIMENT and DIVISION
also equate to the same cipher letters (V and A) giving further evidence that we
are on the right track. Using the common letters between CROSSROADS,
REGIMENT, and DIVISION with the XGGXFS possibilities shows that either
ATTACH or ATTACK is consistent with the first three. We now place the
letters of CROSSROADS, REGIMENT, and DIVISION in the alphabet and
cryptogram.

(8) With this start, you should be able to see many more possible plaintext words in
the text. TOMORROW, VICINITY, and ROAD JUNCTION all appear with
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only one or two letters missing. Many spelled out numbers also appear. The
repeated NGUC is STOP, a common stereotype used in telegraphic text in
place of a period. EALL is WILL. XGGXFS must be ATTACK. The completed
plaintext is—

"ATTACK WILL BEGIN AT ZERO SIX HUNDRED TOMORROW MORNING
IN VICINITY OF CROSSROADS THREE SIX TWO STOP YOUR REGIMENT
WILL SPEARHEAD ATTACK STOP DIVISION COMMAND WILL MOVE
FORWARD FROM CROSSROADS TWO FIVE NINE TO ROAD JUNCTION
EIGHT SEVEN SIX STOP ONE FIVE REGIMENT IS DIVISION RESERVE.“

(9) Use of word patterns is a powerful tool to gain entry into a cryptogram. It will
not always work out as easily as the example shown here. Repeated letters do
not always represent repeated words. Many words that are used in messages will
not be found in the word pattern tables, particularly proper names. Be alert to
the patterns of repeated letters in names you would expect to find in message
traffic. If you can recognize the pattern of a word, it does not have to be in the
tables to use it.

4-13. Vowel-Consonant Relationships
When you can successfully discover plaintext words in a cryptogram, the solution
usually comes quickly. Sometimes you will encounter a cryptogram in which you can
find no basis to assume plaintext. You can find no stereotypes, no usable numbers, and
no repeated pattern words. In these cases, you can use the characteristics of the
language itself to determine individual letters.

a. Language Characteristics. Languages which use an alphabet to spell out words
phonetically produce exploitable letter relationships. To make words pro-
nounceable, vowels and consonants tend to alternate. We do not expect to find
many consonants or many vowels consecutively. In cases where they do, the
possibilities are limited to pronounceable combinations. Exploitation of these letter
relationships begins by determining which letters are consonants and which are
vowels.

(1) Vowels tend to occur next to consonants. Consonants tend to occur next to
vowels. Each contacts the other more readily than it contacts its own type.

(2) Since there are more consonants than vowels in English, vowels tend to contact
more different letters than consonants do. A vowel will commonly contact a lot
of different consonants, whereas a consonant will tend to contact the smaller
number of vowels. By studying which letters contact each other and how many
different contacts each letter has, we can sort ciphertext letters into vowels and
consonants fairly reliably.

(3) To make use of these vowel-consonant relationships, we use a special kind of fre-
quency count which charts contacts as well as frequencies.
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b. Trilateral Frequency Count. The trilateral frequency count is used to record, for
each letter in a cryptogram, the letter that precedes it and the letter that follows it.
Figure 4-4 shows a cryptogram and its trilateral frequency count. The pairs of letters
appearing in the column below each letter of the alphabet are the preceding and
following letters for each occurrence. For example, the YG that appears below the
letter A shows that the first A in the cryptogram occurred as part of the segment
YAG. Refer to the cryptogram itself, and you will see that the segment YAG occurs
in the second group of the message. Two numbers appear above each letter of the
alphabet. The top figure is the frequency of that letter, which is the same as the
number of pairs of letters in the column below it. The second number is the number
of different letters the basic letter contacts. This type of frequency distribution and
its supporting contact information take some time to prepare by hand, but they can
lead to the solution when other methods fail.
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(1)

(2)

(3)

(4)

(5)

The contact information is used to determine which ciphertext letters are
vowels and which are consonants. More often than not, the highest frequency
plaintext letter is a vowel, even when E is not the highest frequency letter. An
even more reliable indicator is the number of contacts. The letter that contacts
the most different letters will usually be a vowel. In the example in Figure 4-4,
ciphertext Y is likely to be a vowel for both reasons. The letters that Y contacts
most frequently are likely to be consonants.

In cases where there are several letters all about the same frequency and no
letter stands out as a likely vowel, we can begin our approach through likely
consonants instead. All or most of the lowest frequency letters should be conso-
nants. The letters they contact most frequently are likely to be vowels.

We can use either a likely vowel or the set of likely low frequency consonants as
our starting point. Whichever we start with, we will use both as the problem
develops. The object is to separate the consonants and vowels by plotting the
contacts of each in separate vowel and consonant line charts.

For our example, we will pick the low frequency consonants as the starting
point. The process begins by charting the contacts of the lowest frequency
letters. We will begin with the letters that only occurred once in Figure 4-4–C,
H, J, L, O, and P. Draw a horizontal line two to three inches long and write the
selected letters above it. Draw a vertical line several inches from the center of
the horizontal line producing a T-shaped figure. This is the consonant line. The
contacts are charted on the line with the first letters of each pair to the left and
the second to the right. Each new contact letter is charted on a new row. With
the contacts for C, H, J, L, O, and P charted, the consonant line appears below.

Continue adding the lowest frequency letters one frequency group at a time. We
first placed those with a frequency of one. Next add those with a frequency of
two. Continue with those with a frequency of three and so on. Stop when the
next frequency would represent more than 20 percent of the total. Going any
further raises the chance too high of including a vowel that would bias the chart.
If a vowel occurs only once or twice and is included, its influence will be small. If
it occurs five or six times and we include it, it could lead to wrong follow-on
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decisions on vowels and consonants. In our example, there are 130 letters. We
want to keep our sample below 20 percent, or not more than 26 letters
altogether. On this basis, we can add the frequencies of 2, 3, and 4, but not 5.

(6) The consonant line now shows that the low frequency consonants contact the
ciphertext letter Y more than any other letter. The probability is very high that
this is a vowel. It is tempting to select the letter V as a vowel, but it is better to
proceed one letter at a time at this point.

(7) Using the letter Y and its contacts, we next begin construction of a vowel line. It
is charted exactly the same as the consonant line chart. The vowel line
including just the letter Y’s contacts is shown below.

(8) The vowel line shows us we were correct in not initially accepting the letter V as
a vowel. It contacts the low frequency consonants quite readily, but it also con-
tacts a vowel readily. It may be a consonant such as R, L, or N which easily
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(9)

combines with other consonants. We will not try to place V in either line at this
point.

The letter W contacts Y six times and is a likely consonant. We will continue by
going back to the consonant line and adding W.

(10) The letter T now appears as a strong candidate for a vowel. It is second only to
Y in consonant contacts so far, and just as importantly, it does not contact the
already selected vowel at all. We add T and its contacts to the vowel line.
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(11) The vowel line shows A and U as likely consonants. Adding these letters to the
consonant line produces the next diagram.

(12) B appears to be a vowel. This is reinforced by the letters BUUB in the first line
of the text. If U was correctly selected as a consonant, B is probably a vowel on
the basis of this letter pattern. It is a good idea at this point to return to the
text and underline all the recovered vowels.
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(13)

(14)

Examination of the vowel-consonant patterns in the text confirms additional
consonants. Double letters preceding or following the vowel are very unlikely to
be vowels. We can then assign ciphertext E and Gas consonants. The GGBG
segment on the first line could not all be vowels. EE occurs three times in the
text following a vowel.

V appears to be a consonant from the number of contacts in the vowel line, and
its appearance between vowels in the segments YVB and TVY confirm it as a
consonant. Placing G, E, and V in the consonant line produces this diagram.
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(15) The letters F, I, and S remain unidentified. At least one of these is likely to be a
vowel, since four of the letters are expected to be vowels and we have only iden-
tified three so far. Comparing the appearance of F, I, and S in the vowel and
consonant lines, we see that the letter I is the best candidate for a vowel. The
letter I does not appear on the vowel line at all, whereas, F and S directly con-
tact a number of the recovered vowels. We now underline I in the text and add
it to the vowel line.

(16) There are a number of directions you can take at this point. No single example
can demonstrate them all. Some of the approaches that can be tried are—

TO analyze vowel combinations to determine individual vowels.
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To search for the plaintext consonants N and H. These two letters have
typical patterns of contact with consonants and vowels. N tends to follow
vowels and precede consonants. H tends to follow consonants and precede
vowels. In some cryptograms these features will be very evident in the vowel
and consonant line diagrams. In others, they will not stand out at all.
To recover double letters by frequency analysis. Plaintext LL is the most fre-
quent double consonant. EE and OO are the most frequent double vowels.
TO recover common word endings such as -ING and -TION, which often
appear as repeats even when complete words do not repeat.

(17) We will use several of these approaches to complete the solution of the sample
problem. First, one vowel combination appears in the cryptogram, the cipher-
text TB as part of the segment TGTBU. Referring to the two-letter frequency
data in Appendix A, page A-2, the most frequent vowel combinations are EE,
IO, OU, and EA. TB is not EE, because it is not a double letter. It is likely to
be one of the other three. IO is particularly significant, because it is usually
part of a -TION combination when it appears. The letters G and U, which
precede and follow BT in the text, are high frequency consonants and support
the -TION possibility. The letter T occurs again before G, which would
produce -ITION, a very good letter combination.

(18) If TGTBU is -ITION, the letter U may appear with the typical pattern of
plaintext N. Examining the occurrence of U in the vowel and consonant lines,
we see that U follows vowels more often than it precedes them. It also precedes
consonants more often than it follows. The differences are slight, but they help
to confirm the initial assumption.

(19) Ciphertext EE occurs three times. This is likely to be plaintext LL. Each time
it is preceded by ciphertext T, which we have tentatively identified as the
plaintext I. ILL is another good combination that appears as part of many
common words such as HILL and WILL.

(20) Y is the most common letter, and it is a vowel. While we would not usually
begin analysis by assuming the most common vowel is E, our tentative iden-
tification of I and O make this much more likely. If Yc is Ep, then the remain-
ing high frequency vowel, Ic, is probably Ap.

(21) Placing all the tentative recoveries in the cryptogram produces the next
example.
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(22) With the assumed letters filled in, two numbers stand out. ONE appears in the
second line, and NINE appears in the last line. Since numbers tend to occur
with each other, our next objective is to try to place additional numbers adja-
cent to these two. If we try SEVEN after ONE because of the -E-EN pattern, it
leads to the recovery of SIX before ONE and FIVE before NINE.

(23) All of the high frequency plaintext letters except R are now recovered. Vc is the
obvious candidate for Rp due to its high frequency and appearance in the text.

(24) Placing plaintext S, V, X, F, and R reveals this text.
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(25) Many possibilities for plaintext appear now. ZERO, POSITION, RIVER
CROSSING, PREPARATORY, and FOUR can all be seen upon close
examination.

(26) Analysis of the cipher sequence shows it to be a simply transposed keyword
mixed sequence, which identifies Jp as Zc and Qp as Mc.
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CHAPTER 5

MONOALPHABETIC MULTILITERAL
SUBSTITUTION SYSTEMS

Section I

Characteristics and Types

5-1. Characteristics of Multilateral Systems

As explained in Chapter 3, monoalphabetic unilateral systems are those in which the
ciphertext unit is always one character long. Multilateral systems are those in which
the ciphertext unit is more than one character in length. The ciphertext characters
may be letters, numbers, or special characters.

a. Security of Multilateral Systems. By using more than one character of ciphertext
for each character of plaintext, encipherment is no longer limited to the same num-
ber of different cipher units as there are plaintext units. Although there is still only
one alphabet used in multilateral systems, the alphabet can have more than one
ciphertext value for each plaintext value. These variant ciphertext values provide
increased security. Additionally, the plaintext component of alphabets can be
expanded easily to include numbers, punctuation, and common syllables as well as
the basic 26 letters. When used, the variation in encipherment and the reduced
spelling of numbers, punctuation, and common syllables minimize the exact
weaknesses that we used in Chapter 4 to break into unilateral systems.

b. Advantages and Disadvantages. The increased security possible with variant
multilateral systems is the major advantage. The major disadvantage is that by
substituting more than one character of ciphertext for each plaintext value, the
length of messages and resulting transmission times are increased. A second disad-
vantage is that more training and discipline are required to take advantage of the
increased security. If training and discipline are inadequate, the security advan-
tages are lost easily.
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5-2. Types of Multilateral Systems
Multiliteral systems are further categorized by the type of substitution used. The
major types are—

Biliteral systems, which replace each plaintext value with two letters of ciphertext.
Dinomic systems, which replace each plaintext value with two numbers of cipher-
text.
Trilateral and trinomic systems, which replace each plaintext value with three
letters or numbers of ciphertext.
Monome-dinome systems, which replace plaintext values with one number for some
values and two numbers for other values.
Biliteral with variants and dinomic with variants systems, which provide more than
one ciphertext value for each plaintext value.
Syllabary squares, which may be biliteral or dinomic, and which include syllables as
well as single characters as plaintext values.

5-3. Cryptography of Multilateral Systems
The cryptography of each type of multilateral system, including some of the odd varia-
tions is illustrated in the following paragraphs. Most of these systems are coordinate
matrix systems in which the plaintext values are found inside a rectangular matrix and
the ciphertext values consist of the row and column coordinates of the matrix.

a. Simple Biliterals and Dinomics. The simplest multilateral systems use no varia-
tion. They typically use a small rectangular matrix large enough to contain the
letters of the alphabet and any other characters the system designer wants to use as
plaintext values.

(1)

(2)

(3)

The plaintext values are the internals of the matrix. They may be entered
alphabetically, follow a systematic sequence, or they may be random. They
may be entered in rows, in columns, or by any other route.

The row and column coordinates are the externals. Conventionally, the row
coordinates are placed at the left outside the matrix, and the column coor-
dinates are placed at the top. As with the internals, the coordinates may be
selected randomly or produced systematically.

A ciphertext value is created by finding the plaintext value inside the matrix
and then combining the coordinate of the row with the coordinate of the column
for that plaintext value. Either can be placed first, although placing the row
coordinate before the column coordinate is more common.
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(4) Five by five is a common size for a simple system (Figure 5-1). The 26 letters are
fitted into the 25 positions in the matrix by combining two letters. The usual
combinations are I and J or U and V. It is up to the deciphering cryptographer to
determine which of the two is the correct value. There are few, if any, words in
common usage in which good words can be formed using either letter of the I/J
or U/V combinations. Other common sizes are 6 by 6 (which gives room for the
10 digits), 4 by 7, and 3 by 10. Many other sizes are possible.

(5) Example A in Figure 5-1 is a simple 5 by 5 matrix with I and J in the same plain-
text cell of the square. The coordinates and the sequence within are in
alphabetic order.
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(6) Example B is a simple 3 by 10 matrix with orderly coordinates and a keyword
mixed sequence inscribed within. The four extra cells are used for punctuation
marks.

(7) Example C is a 6 by 6 matrix with a spiral alphabetic sequence followed in the
spiral with the 10 digits. The coordinates in this case are related words.

(8) Example D is a 5 by 5 matrix with numeric coordinates. The plaintext sequence
is keyword mixed entered diagonally. In this case, there is deliberately no
repetition between the row and column coordinates. This allows the coordinates
to be read either in row-column order or in column-row order without any
ambiguity, as in the sample enciphered text. This is unusual, but you should be
alert to such possibilities.

b. Triliterals and Trinomics. Trilateral and trinomic systems are essentially the
same as biliteral and dinomic systems. The difference is that either the row coor-
dinates or the column coordinates consist of two characters instead of one, creating
a three-for-one substitution. Such systems offer no real advantage except to provide
a slightly different challenge to the cryptanalyst, and have the distinct disadvan-
tage of tripling the length of messages. They are easily recognized, and offer no
increase in security.

c. Monome-Dinomes. Monome-dinomes are coordinate matrix systems constructed
so that one row has no coordinate. The values from that row are enciphered with the
column coordinate only. This means that some ciphertext values are two characters
in length (dinomes) and others are only one (monomes). If the values used as row
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coordinates are also used as column coordinates, no plaintext values are placed in
the monome row under those repeated column coordinates. The blanking of cells in
the monome row is shown in the example below.

Resulting message:

25720 67463 63485 69575 40000

(1) If the cells corresponding to the row coordinates in the monome row are not
blanked, the deciphering cryptographer will have difficulty. Decipherment
proceeds left to right, and when a 5 or a 6 is encountered in the matrix shown, it
will always be a row coordinate or combine with a preceding row coordinate. It
will never stand alone as a monome. If the 5 and 6 cells were not blanked, the
deciphering cryptographer could not tell if a 5 or 6 were a monome or the begin-
ning of a dinome. The cryptographer would have to rely on context to figure out
which was intended, and that could lead to errors.

(2) The additional examples of monome-dinomes shown below demonstrate the
various ways they can be constructed. The last example (top of page 5-5) is a
monome-dinome-trinome.
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Resulting message:

31323 12331 3023271318 90000

d. Variant Systems. Variants in a multiliteral system allow plaintext characters to
be enciphered in more than one way. Variants can be external or internal.

(1) External variant systems have a choice of coordinates. Either row coordinates
or column coordinates or both can have variants. Examples A and B in
Figure 5-2 provide two ways to encipher every letter. 
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(2)

Example C provides four ways to encipher every letter. Example D was con-
structed to provide the most variants for the most common letters. The letters
E, T, and O can all be enciphered in eight different ways. R, N, and I can be en-
ciphered in six different ways. A, S, D, L, U, H, and M can be enciphered in
four different ways. Q, X, Z, and the comma can only be enciphered one way.
When any of the systems are conscientiously used, repeated words in the text
will not produce repeated ciphertext segments.

Internal variant systems use larger matrices to provide variants inside the
matrix. Each common plaintext letter appears more than once. Here are two
examples of internal variant systems.

The first example above places the letters in the matrix according to their
expected frequency in plaintext. If their use is well balanced, all letters in the
square will be used with about the same frequency. The second square achieves
the same effect by using 10 words or phrases in the rows, which use all the
letters. The first letters of the column spell out an eleventh word—logarithms.
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e.

f.

Syllabary Squares. Another type of internal variant system is the syllabary
square. This type includes common syllables as well as single letters. When these
are used, the same square may be used for a period, changing the coordinates more
frequently than the square itself.

The two sample encipherments of REINFORCEMENTS show that a syllabary
square suppresses repeats in ciphertext just as single letter variant systems do. It
also has the advantage of producing shorter text than single letter multilateral
systems.

Sum Checks. It is very easy for errors to occur when messages are transmitted and
received, whatever means of transmission are used. Because of this, some users
introduce an error detection feature into traffic known as sum checking.

(1) In its simplest form, a sum-check digit is added to every pair of digits in numeric
messages. The digit is produced by adding the pair of digits to produce the
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third. If the result is larger than 9, only the second digit is used, dropping the
10’s digit, for example 8 plus 9 equals 7 instead of 17. This is also known as
modulo 10 arithmetic.

(2) Whenever the first two digits do not add up to the third, the receiving cryp-
tographer is alerted that an error has occurred. The cryptographer then tries to
figure out the correct digit from context or by assuming that two of the digits are
correct and determining what the third should be.

(3) There are many variations on the simple system of sum checking described
here. Sometimes the sum-check digit will be placed first or second in each
resulting group of three. Sometimes a sum check will be applied to a larger
group than two numbers. Sometimes a different rule of arithmetic will be used,
such as adding the sum-check digit so that the resulting three always add to the
same total. Sometimes a more complex system will be used that provides
enough information to resolve many errors as well as detect them, particularly
when computers are used in data and text transmissions.

(4) Computer produced sum checks can be used with any characters, not just num-
bers. Computer produced sum checks will normally be invisible to the user, as
they are automatically stripped out when a message is received. They may or
may not be invisible to the cryptanalyst. Recovery of computer produced sum
checks is well beyond the scope of this text, but you should be alert to their
existence.

Section II

Analysis of Simple Multilateral Systems

5-4. Techniques of Analysis
The first steps in solving any multilateral system are to identify the system and
establish the coordinates. It makes little difference whether the system uses numbers
or letters for coordinates. The techniques are the same in either case. Once the system
is identified and the coordinates set up, a solution of the simpler systems is the same as
with unilateral systems. Variant systems require additional steps. Each type is con-
sidered in the following paragraphs.
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5-5. Identification of Simple Biliteral and Dinomic
Systems
Simple biliteral and dinomic systems are very easy to recognize and solve.

a. First, the two-for-one nature of the system will usually be apparent. The message
will be even in length. The majority of repeated segments will be even in length,
although when an adjacent row or column coordinate is the same, a repeat may
appear odd in length. The distance between repeats, counted from the first letter of
one to the first letter of the next, will be even in length.

b. Second, unless the identical letters or numbers are used for row and column coor-
dinates, there will be limitation by position. One set will appear in the row coor-
dinate position, and the other set will appear in the column coordinate position.
Even in the case where all coordinates are different and either the row or column
coordinate character may be placed first, each pair will be limited to one from one
set and one from the other. If you do not recognize it right away, charting contacts
will make it obvious.

c. For systems with letters as coordinates, not more than half the alphabet will be used
as coordinates. This severe limitation in letters used is the most obvious charac-
teristic, since only very short unilateral messages are ever that limited. A phi index
of coincidence will reflect that limitation, always appearing much higher than
expected for a unilateral system.

d. Dinomic systems, since they are limited to the 10 digits anyway, are not quite as
obvious. Simple systems should still show positional limitation, however.

5-6. Sample Solution of a Dinomic System
The next problem shows the steps in solution of a sample dinomic system. These steps
apply equally to biliteral systems.
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a. The most obvious thing about this cryptogram is that every pair of numbers begins
with 2, 4, 6, or 8. The final pair begins with 0, but since it appears nowhere else, it is
probably a filler. This suggests that we are dealing with a matrix with four rows.

b. Scanning the second digit of every pair, we see that there is some limitation in the
column position, also. All digits are used except 8. The matrix appears to have nine
columns, although it is possible that a column for 8 exists, but no values from it
were used. Four by nine is a reasonable size for a matrix.

c. Next, we check for repeats and underline them. We also prepare a dinomic
frequency count by setting up a 4 by 9 matrix and checking off each dinome that
appears.

d. The two longer repeats both include patterns of repeated values. Word patterns can
be constructed on repeated dinomes just as they were for repeated single letters.
The word patterns for the two longer repeats are shown below.
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e. The word pattern lists in Appendix D show only one possibility for each pattern as
shown. The two are consistent with each other. Using these recoveries, we can set up
a matrix and place the values in it and the cryptogram.

f. The plaintext words ENEMY and AIRSTRIKE are now obvious. Placing the M
from ENEMY shows COMMANDING at the end of the message. Most of the
remaining plaintext letters are easily recovered.
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g. The letters in the second row precede all the letters in the third row alphabetically.
This suggests an alphabetic structure, although the columns are clearly not in the
correct order. The first row probably contains a keyword. If we rearrange the
columns so the letters in the second and third rows fall in alphabetical order, we see
the next structure.

h. The plaintext letters area keyword mixed sequence based on INCOME TAX. After
placing the remaining letters, there are still 10 blank cells in the matrix. Seven of
them are used in the cryptogram, and they cluster together in segments of three or
four dinomes. They show the typical pattern of numbers. In particular, the four
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plaintext values of groups 50 and 51 of the message indicate time, and 66 is
probably a 0. More likely than not, the remaining numbers fill the bottom row of
the matrix in numerical order, but these recoveries cannot be confirmed without
more information. If hill numbers could be compared to known numbers from an
enemy map sheet, we could accept the values with more confidence. At this point,
we are reasonably confident of the letter arrangement and the number 0, but the
remaining numbers are only a possibility. However, if this were a current real life
situation and the enemy referred to by the text is our own forces, we would certainly
consider reporting the likelihood of air strikes on our artillery positions.

5-7. Analysis of Monome-Dinome Systems
The characteristics of biliteral and dinomic systems that stand out most are the
divisibility by two and the positional limitation that makes it easy to determine matrix
coordinates. By changing the length of the plaintext unit from character to character,
monome-dinome systems avoid both of these characteristics. In their place, however,
the frequency of the numbers (or occasionally, letters) used as row coordinates tends to
be higher than the other coordinates. Choosing the highest frequency numbers as row
coordinates gives a starting point to reconstruct a monome-dinome system. Consider
the next example.

a. Repeats are underlined and the number frequencies are shown in the example. A
dinomic system can be ruled out, because the repeats are an odd interval apart. The
distance between the repeats is 153 characters, counting from the first character of
one to the first character of the next. A three-for-one substitution is possible from
the position of the repeats, but no patterns or positional limitations appear when
divided into threes. The very high frequency of the numbers 0 and 9 in relation to
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the other numbers suggests that the system is monome-dinome. The most likely
row coordinates are 0 and 9. Other row coordinates are possible, but at this point it
is best to start with the most likely candidates only.

b. Begin by breaking the message into monomes and dinomes using only the 0 and 9 as
row coordinates. Mark off the divisions in pencil, keeping in mind that some
changes may be required later. Start with the first character of the message and
work through in order to the end, marking off the monomes and dinomes. Whenever
the first character after a division is a 0 or 9, include it with the next character. If it
is any other character, leave it as a monome.

c. With the divisions in place, we can try a word pattern on the long repeat.

d. We next set up a monome-dinome matrix with row coordinates 0 and 9 and include
the recovered letters. Shown below is the partially recovered matrix and the crypto-
gram with all letters from RECONNAISSANCE placed in the plaintext and the
matrix.
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e. These recoveries suggest additional plaintext, particularly the message beginning
AERIAL RECONNAISSANCE REPORTS ENEMY. Placing these new values
leads to additional recoveries.
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f. Several things remain to be done to complete the solution. The columns can be
rearranged to recover a keyword in the top row and alphabetical progression in the
next two rows. Additionally, there are two unrecovered segments of text. Both of
them include a number of 5s, and the preceding text in each case suggests numbers.
The solution is that there is another row in the matrix with the 5 as its coordinate. It
was not used enough to select from frequency alone, but once enough text was
recovered, the structure can be seen. The added row includes the numbers. The
complete solution appears in the next example, with the recovery of specific num-
bers only tentative.
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5-8. Application of Vowel-Consonant Relationships
to Multiliterals
Vowel-consonant relationship solutions can be applied to multiliterals, too. As long as
you can determine the coordinates of the matrix, you can set up a dummy matrix with
any sequence of characters inside as a pseudoplain component. You then reduce the
cryptogram to unilateral terms by deciphering with the dummy matrix. Next, solve the
resulting unilateral cryptogram using any of the techniques learned with unilateral
systems, including the use of trilateral frequency counts and the vowel and consonant
lines.
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5-9. Solution of Trilateral and Trinomic Systems
Trilateral and trinomic systems are solved in exactly the same way as biliterals and
dinomics. The systems are identified by the tendency of messages to break into groups
of three instead of groups of two. With simple triliterals and trinomics, positional
limitation is even more evident than it is for biliterals and dinomics. Look for a limited
set of pairs of characters as either the first pair of characters or the last pair of charac-
ters in every three, Once these are found, set up your coordinates and solve as before.

Section III

Analysis of Variant Multilateral Systems

5-10. Identification of Variant Systems
As with any coordinate system, analysis of variant multilateral systems begins with
determination of the coordinates. If the product of the row and column coordinates is
50 or more, the system is almost certainly a variant system of some kind.

5-10. Analysis of External Variant Systems -
Frequency Matching
External variant systems are generally easier to solve than internal variant systems.
Frequency counts can usually be used to determine which coordinates combine with
each other on the same row or column, whenever the text is long enough to give a good
representative sample, as shown in the next problem.
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a. The cryptogram used 10 different letters as row coordinates and 10 different letters

b.

c.

as column coordinates. Using these coordinates, a digraphic frequency count has
been completed as shown. For example, the letter I is paired with itself five times,
so the number 5 appears in the matrix at the point where the row and column of I
intersect.

Examining the frequency count, we can see that there are good frequency pattern
matches between certain rows and certain columns. For example, the I row and the
R row are nearly identical. Similarly, the A column and the I column are nearly
identical. Carrying this process further, we can match the row pairs, AU, DP, IR,
MN, and OS. The column pairs are AI, CN, GS, MO, and RU. At this point, we
have no idea in what order the coordinate pairs belong or which letter in each pair
comes first or if it even matters which letter comes first. We have enough informa-
tion, however, to reduce the cryptogram to unilateral terms.

To reduce the cryptogram to unilateral terms, we set up a matrix with the combined
coordinates and write any sequence of letters within it, for example, A through Y.
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d. We see that repeats appear in the pseudotext that results from our trial decipher-
ment. The repeats that were suppressed by the variants are now visible with the
variants combined. The recovery of the plaintext is like any of the previous
problems. When we recover the plaintext and enter the recovered values in the
matrix in place of the trial sequence, we reach the solution shown below.
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e. With the plaintext values filled into the matrix, we can see in what order the rows
and columns belong. Starting with the last row of the internals, we rearrange the
columns of the matrix in alphabetic order.
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The first row of the internals should follow alphabetically after the third
row—scdef, gikln.

f. All that remains is to fill in the missing letters H, J, and Q in the plaintext sequence,
and to try to recognize how the coordinates were constructed. As mentioned earlier,
it is common practice to couple I with J or U with V when using a 5 by 5 matrix.
Since J did not appear in the plaintext, we may assume it occupies an alphabetical
position within the I block. The Q clearly belongs between the P and T, leaving the
H in the top row. The plaintext keyword is BRAHMS (the classical composer). With
that as a clue, the letters in the coordinates are shifted to their correct positions,
revealing the keywords PIANO, DRUMS, MUSIC, and ORGAN.

5-12. Analysis of Variants - Isologs
Two or more encrypted messages with different encrypted text, but the same underly-
ing plaintext are called isologs. When isologs are encountered, your job is much easier.
Isologs are particularly useful in solving variant multilateral systems, either external or
internal.

a. Isologs can be recognized by one or more of these characteristics—
Identical message lengths.
Similar characteristics in the text, such as repeated segments or characters

occurring in the same position in each message.
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External indications, such as identical times of file or identical message numbers
included in the header for each message. Normally, no two different messages
from the same sender receive the same file time or message number. When you
see the same time of file on the same date originating from the same unit, the
messages are likely to be isologs.

b. Two messages that showed the same time of file in the message header appear in
Figure 5-3.

c.

d.

e.

Each message shows positional limitations. Message 1 has the letters
ADFGLNQRTX in the row coordinate position and BCHKLMPSVZ in the column
coordinate position. Message 2 has AEFGKLOQVZ in the row coordinate position
and BDHMPRSTWY in the column coordinate position. The two messages are not
encrypted in the same system, but they appear to be isologs.

The initial step in solving these isologs is to see what values equate to each other in
the two messages. Pick one of the most frequent digraphs in either message as a
starting point. For example, FH occurs four times in the first message. A frequency
count, while not strictly necessary, may be helpful in spotting the most common
values. The digraphs that occur in the same positions in message 2 as FH in
message 1 are OS, GW, GS, and another OS.

The next step is to find each of the digraphs in message 2 that equated to FH from
message 1. The letters OS, GW, and GS in message 2 and the digraphs in the same
position in message 1 are underlined in Figure 5-3.
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f.

g.

We now see that RH, RP, FP, and FH in message 1 equate to GS, GW, and OS in
message 2. A check of the new values in message 1 adds the additional digraph OW
in message 2, completing the equations for that set. It appears that R and F are
variant row coordinates and P and H are variant column coordinates in message 1.
Similarly, the message 2 variants are G and O on the rows and W and S on the
columns.

Continue the process by picking additional repeated values. Complete the equa-
tions for each, working back and forth between the two messages, just as we did for
the initial digraph FH. Continue until all coordinates have been combined, or you
run out of digraphs to compare. You can set up a plot to keep track of the equations
as shown in the next example.

h. Other combinations could have been selected than the ones shown, but these are
sufficient to show all the variants in both matrices. From this point, either message
can be reduced to unilateral terms and solved. Then the recovered plaintext can be
applied to the other message to complete the recovery of the second matrix. Note
that if the same matrix was used in both messages, the similarity should be quickly
recognized and the solution accomplished more easily. The next paragraph shows
the simpler technique when the same matrix is used.

5-13. Solution Using Isologous Segments
Segments of ciphertext which have the same underlying plaintext are known as
isologous segments. A technique similar to the one used in isolog solution can be used
any time repeated plaintext can be identified. This is likely to occur with repeated
beginnings and endings to messages or with long repeated words and phrases.

a. Recognizing repeated plaintext in variant systems requires painstaking inspection
of the ciphertext. Computer indexes of repeated plaintext, which show repeated
text on consecutive lines along with the preceding and following text makes repeats
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easier to recognize. In any long plaintext repeat, some of the ciphertext digraphs or
dinomes are likely to repeat. Other ciphertext digraphs or dinomes are likely to
show common row or column coordinates. Pairs with neither row nor column coor-
dinates in common will generally be in the minority. Therefore, although a lot of
trial and error may be involved, the longer repeated plaintext segments can often be
identified. Consider the two message beginnings shown below.

b. The similarities of the text make it quite clear that the underlying plaintext is the
same in both cases, and the same matrix is used for both. Proceeding on the
assumption that the plaintext and matrix are the same, it is easy to match the
remaining values to determine the variants. For example, from the first dinome in
each message, 3 and 4 are column variants. From the second dinome in each
message, 8 and 9 are column variants. All the variants can be combined from this
short example, and the remainder of the solution is routine.

5-14. Analysis of Internal Variant Systems
Internal variant systems are generally more difficult to solve than external variant
systems. With no coordinates to combine, frequency counts do not provide immediate
clues to variants. Similarly, isologous segments are harder to recognize. Some charac-
ters are likely to repeat in isologous segments with internal variant systems, but the
partial repeats caused by common row or column coordinates are much less likely to
occur. Still, given enough messages from a single system to produce repeats; given
operator carelessness in encryption; or given stereotyped traffic, these systems can
readily be solved, too. Once a plaintext entry is found, the remainder of a solution is
not difficult. When you find isologs or isologous segments, you can equate ciphertext
values just as was demonstrated in the internal variant examples. The only difference
is that you do not combine coordinates through this process, but instead find all cells
in the matrix that have the same plaintext value.
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5-15. Analysis of Syllabary Squares
Syllabary squares are closely related to small code charts, and the solution of both
types of systems is similar. The analysis of syllabary squares produces some distinct
differences.

a.

b.

c.

Isologs or isologous segments are not necessarily the same length in each case. The
encipherment examples below are repeated from paragraph 5-3e.

Isologous segments can often still be recognized by the plaintext values which have
no variation. In the example, there is only one way to encipher the letters M and S.
When REINFORCEMENTS is enciphered, the ciphertext equivalents of M and S
will always be the same. Other values are likely to begin with the same row coor-
dinate, since syllables beginning with the same letter are likely to be on the same
row, such as the R and the RE. Still others will have a possible variation, but the
variation will not be used. The repeated CE syllable in both segments is an example
of this. As a result of all these considerations, isologous segments are often
recognizable and provide a point of entry to the system.

Solution of syllabary spelling will be further explained in Part Six, Analysis of Code
Systems.
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PoIygraphlc  Substitution Systems

P A R T  T H R E E

CHAPTER 6

CHARACTERISTICS OF POLYGRAPHIC
SUBSTITUTION SYSTEMS

Section I

Characteristics of Polygraphic
Encipherment

6-1. Types of Polygraphic Systems

As first explained in Part One, polygraphic cipher systems are those in which the
plaintext units are consistently more than one letter long. The most common type is
digraphic substitution, which replaces two letters of plaintext with two letters of
ciphertext. There are also such systems as trigraphic and tetragraphic substitution.
The larger types are rare, and awkward to use in military applications, so they are not
included in this manual.

6-2. Digraphic System Characteristics
The simplest type of digraphic substitution, if not the simplest type to construct, uses
a 26 by 26 matrix with plaintext values as coordinates to two-letter ciphertext values
within the table. A sample of a digraphic substitution matrix is shown in Table 6-1.
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a. As the example shows, with any digraphic system, repeated plaintext digraphs can
cause a ciphertext repeat. Repeated single letters do not cause ciphertext repeats.
Digraphic systems suppress individual letter frequencies, but show normal fre-
quency patterns for pairs of letters. Since there are 676 possible digraphs in the
English language, many more groups of text are needed for digraphic frequencies to
be very useful as a direct aid to analysis.
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b. Repeated plaintext words and phrases cause ciphertext repeats only when they
begin in the same odd or even position. If both occurrences of a plaintext repeat
begin in the odd position or both begin in the even position, the ciphertext repeats.
If one occurrence is in an odd position and one is in an even position, they will
produce different ciphertext. As a result, nearly half of all plaintext repeats are
suppressed. This is shown in these three alternate examples, all enciphered from
Table 6-1.

c.  In the first example, all three ZEROs produce a repeat when they all begin in the
even position. In the second example, they all begin in the odd position, and only
the portions of the three ZEROS that appear as complete digraphs (the ERs)
produce a repeat. In the third example, the two ZEROs that begin in the even posi-
tion produce repeats, but the first ZERO, which begins in the odd position, does
not.

d. The suppression of individual letter frequencies and a significant portion of plain-
text repeats means that digraphic systems are considerably more secure than
unilateral systems and most multiliterals.

6-3. Four-Square System
Large table digraphics are awkward systems for military usage. In their place, there
are several much more convenient small matrix digraphic systems available with
about the same degree of security. The first of these is the four-square.

a. The four-square consists of four 5 by 5 matrices in a square. The two plaintext
letters and the two ciphertext letters of each encipherment each use a different
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square. The squares marked p1 and p2 usually, but not always, contain standard
sequences. The two squares marked c 1 and C2 can include any mixed sequence.

b. Encipherment or decipherment follows a rectangular pattern. Whether enciphering
or deciphering, the letters of the digraphs are located in the appropriately labeled
squares. These letters form diagonally opposite corners of a rectangle. The
equivalents, plaintext or ciphertext, are the remaining corners of the same
rectangle. For example, plaintext MO determines the rectangle outlined in the
square below. Plaintext M determines the upper row and the left column of the rec-
tangle. Plaintext O determines the bottom row and the right column of the rec-
tangle. The ciphertext equivalent, KF, is then found in the remaining corners in the
appropriately labeled squares.
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c.

d.

For a second example, to encipher RT, R is located in the pl square, and T is
located in the p2 square. The ciphertext equivalent of RT is found in the remaining
corners of the rectangle prescribed by RT. The first ciphertext letter, S, is found in
the cl square in the plaintext T column and the plaintext R row. The second cipher-
text letter, N, is found in the C2 square at the intersection of the plaintext R column
and the T row. Tracing the letters from pl to p2 to cl to C2 is shown below.

Decipherment is handled in exactly the same way, except that the ciphertext
letters in the cl and C2 squares determine the rectangle by which the plaintext let-
ters are found.

6-4. Vertical Two-Square
The two types of two-squares are simpler than the four-square system. The first is the
vertical two-square, which uses two 5 by 5 matrices one on top of the other. Normally
both squares contain mixed sequences.
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a.

b.

The rectangular rule used with the four-square is used with the two-square, also.
Whenever the letters to be enciphered are in the same column, however, the letters
become their own equivalents. The encipherment of ON and TE in the example
illustrates this.

The case where the plaintext letters remain unchanged in the ciphertext is called a
transparency. A weakness of this system is that in the long run, about 20 percent of
the digraphs in a cryptogram will be transparencies. This is enough to give away
more plaintext in many cases and enable a speedy solution.

6-5. Horizontal Two-Square
The second kind of two-square is the horizontal two-square, like the vertical, it uses
two 5 by 5 matrices.

a.

b.

The rectangular rule again applies. In the horizontal two-square, values on the
same row are replaced with the same letters in the reverse order. This is illustrated
by the encipherment of the plaintext letters be and ig in the example.

Digraphs in ciphertext which are the same as the plaintext in reverse, are called
reverse transparencies. Like the direct transparencies of the vertical two-square,
they occur in the long run in about 20 percent of the digraphs. They severely
weaken the security of the system.

6-6. Playfair Cipher
The Playfair cipher is the most common digraphic system. Playfair is always
capitalized, because it was named for a Lord Playfair of England. It is the simplest of
systems to construct, using only a 5 by 5 matrix, yet it is more secure than uniliterals
and most multiliterals. The rules of encipherment and decipherment are a little more
complex than the previous digraphic systems. Sizes other than 5 by 5 are occasionally
used.
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a. The first rule of encipherment and decipherment is the familiar rectangular rule.
This applies any time the two letters to be enciphered or deciphered are not in the
same row or column. The first four digraphs in the example follow this rule. One
additional step must be remembered. In tracing the encipherment or decipherment
in the matrix, always move vertically from the second letter to the third letter. For
example, to encipher TH, locate the T and the H and move vertically from the H to
the letter that is in the same column as the H and the same row as the T. Following
this rule, TH is enciphered as QB, not BQ. Similarly, to decipher CU, locate the C
and the U, move vertically from the U to find the first plaintext letter E and then
the second plaintext letter S.

b.  When the two letters to be enciphered or deciphered are in the same row, follow the
rule, encipher right, decipher left. To encipher or decipher, pick the letter to the
right or left of each letter of the given digraph, as appropriate. In the example, the
plaintext letters R and D are in the same row. They are enciphered with the letters
immediately to the right of each letter, producing ciphertext AJ (or AI). If a letter
to be enciphered is at the right edge, as in the encipherment of HE, the next letter
to the right of the right edge is considered to be the letter in the same row at the far
left. The letter to the right of E is P. Similarly, if deciphering, the letter to the left of
the left edge is the letter at the far right in the same row. The letter to the left of F is
N. Each row is treated as if it were written in a circle with the first letter of a row
immediately following the last letter.

c. When the two letters to be enciphered or deciphered are in the same column, use the
rule encipher below, decipher above. To encipher EA in the example, the letters
below E and A are N and E respectively. To decipher ZU, the letters above Z and U
are U and N respectively. As with the rows, columns are treated as if they were writ-
ten in a circle. The letter after the bottom letter in a column is the top letter; the let-
ter before the top letter is the bottom letter.

d. The rules encipher right, decipher left and encipher below, decipher above produce
the acronyms ERDL and EBDA. For many analysts, it is convenient to memorize
these pronounceable acronyms to remember the rules.
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e. The rectangular rule and the row and column rules take care of all possible cases
except double letters. In the Playfair system, there is no rule for enciphering or
deciphering a double letter in the same digraph. When double letters are encoun-
tered in plaintext in the same digraph, the cryptographer must break up the double
letters with a null letter, such as inserting an X between them. As a result, double
letters will never be encountered in the ciphertext, except in error. This is only true
of the Playfair system. Four-squares and two-squares can handle double letters
without any problem.

Section II

Identification of Polygraphic Substitution

6-7. General Digraphic Characteristics
Certain identifying characteristics are common to all digraphic systems. Other charac-
teristics appear only with specific systems.

a.

b.

c.

d.

e.

Message lengths, repeats, and distances between repeats are likely to be even in
length in all digraphic systems because the basic unit is two-letters. Furthermore,
the systems which use 5 by 5 matrices will often only use 25 letters, omitting either
the I or the J in ciphertext. In some cases, these values will be used alternately just
to ensure use of all letters.

Digraphic systems are most often mistaken for biliteral with variant systems,
because both exhibit ciphertext which breaks into units of two and both can use
most letters. The key distinction to look for between biliterals and digraphics is the
complete absence of any positional limitation (paragraph 5-5b) in digraphic
systems.

Two-square systems stand out because of the director reverse transparencies. Scan
the text for the presence of good plaintext digraphs, either direct or reversed, to
identify two-square systems. Direct transparencies indicate vertical two-squares;
reversed transparencies indicate horizontal two-squares.

If no double letters are present in a digraphic, it is probably a Playfair system.

Monographic frequency counts for digraphic systems are not as flat as random text
and not as rough as plaintext or unilateral systems. They generally fall in between
the two. The monographic phi test can be used to confirm this, if necessary.
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6-8. Digraphic Frequency Counts
There are several types of frequency counts you can take for working with digraphic
systems.

a. The most common way to take a digraphic count is to break the text into digraphs
and count those digraphs. For example, given text ABCDE FGHIJ . . . , you would
normally break it as AB, CD, EF, GH, IJ, . . .  . There are two other ways to take a
digraphic count, however. If you are unsure whether there may be indicator groups
or null letters at the beginning, you may not know where to begin breaking the text
into digraphs. As a comparison, you can skip the first character and begin
separating the text into digraphs beginning with the second character. This will
produce a completely different set of digraphs than the usual method: A, BC, DE,
FG, HI, J . . .  . The third way to produce a digraphic count is to combine the two
methods to count all possible digraphs. In this case, you would count AB, BC, CD,
DE, EF, FG, GH, HI, IJ, . . .  . Unless you have a reason to want an alternate method,
stick to the first method.

b. There are two ways to record your count on paper. One is to make a 26 by 26 square
on graph paper, and mark the digraphs in the appropriate cells. The other way,
useful with short cryptograms, is to write the letters A through Z horizontally, and
mark the digraphs by putting the second letter of each digraph under the first letter
of the digraph in the A through Z sequence. Then by scanning the columns under
each letter for repeated letters, you can readily spot repeated digraphs. This
method takes much less space than a 26 by 26 square and gives you the same infor-
mation.

6-9. Digraphic Coincidence Tests
The phi test and phi index of coincidence can be calculated for digraphic frequency
counts as well as monographic.

a. The digraphic phi test is calculated in essentially the same way as the monographic
test. In the monographic phi test, 1 out of 26 comparisons in random text was expec-
ted to be a coincidence for a probability of 0.0385. In the digraphic phi test, 1 out of
676 comparisons is expected to be a coincidence for a probability of 0.0015. The
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probability of a coincidence in plaintext is 0.0069 instead of 0.0667. Thus, the
formulas for the digraphic phi test are—

b. As discussed in the first part of this chapter, digraphic ciphertext frequencies will
occur with the same numbers as plaintext frequencies when digraphic systems are
used. If the digraphic φ o is close to φ p but the monographic φ o is low, the system is
likely to be a digraphic system. If you are using the index of coincidence form of the
test,  the  expected 2  ∆ IC is 4.6. The results are much more variable than the
monographic test, because of the large number of different elements counted, but it
can still be used as a guide. As with any statistical test, the results should not be
used by themselves, but used along with all other available information.

6-10. Examples of System Identification
Three messages in unknown systems follow to show the process that leads to system
identification. Repeats are underlined, monographic and digraphic frequency counts
are shown, and monographic and digraphic ICs are calculated for each. The three
messages were all sent by the same headquarters to subordinate elements, and all con-
tained a common message serial number in their header.
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a. Message texts and data.

Message 1:
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Message 2:
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Message 3:
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b. Different analysts might approach the identification of the systems used in these
messages in different ways, but here is one example of how the systems can be iden-
tified.

(1) Although the messages all carry the same message serial number, which is
usually a sign of isologs, the messages are all different lengths. If they are
isologs, they are not enciphered in the same system.

(2) A comparison of monographic frequency counts confirms that they are in dif-
ferent systems. The highs and lows in each frequency count are too different for
any possibility of repeated use of the identical system.

(3) The ICs give a different picture in each. Message 1 has monographic and
digraphic ICs consistent with plaintext or a unilateral system. The digraphic IC
of 3.41 is slightly below the expected 4.6, but it is within acceptable limits.
Message 2 shows a low monographic IC of 1.26, but the digraphic IC of 5.38 is
also well within plaintext limits. This is typical of digraphic systems. Message 3
is quite high in both monographic and digraphic ICs.

(4)  Messages 1 and 2 use nearly all letters. Message 3, which is twice as long as
message 1, uses only 14 different letters. The high ICs and the limited letter
usage are consistent with a biliteral with variants system. A close inspection of
the digraphic frequency count will show rows and columns with very similar
patterns, suggesting external variants that can be combined. Different letters
are used in the row position than those used in the column position. This
positional limitation confirms the identification of a biliteral with variants
system.

(5) Message 1 has the most repeated text, which is consistent with a unilateral
system. Message 2 has only a few repeats and message 3 has only short and
fragmentary repeats. In message 3, the fragmented repeat on lines 7 and 10 are
in the identical relative position in message 2 as the ZTVK repeat in lines 2 and
5 of message 1. This similarity strongly confirms that the two messages are
isologs.

(6) The identifications of the systems in messages 1 and 3 are clear at this point,
but message 2 still needs to be•clarified. The underlined repeats in message 2 are
in the same relative position as in message 1, if you adjust for the slightly
increased length of the message. Only some of the repeats from message 1
appear in message 2, however. This is consistent with a digraphic system, which
will only show repeats that begin in the same even or odd position.

(7)  In message 2, a check of the long diagonal from the AA position to the ZZ posi-
tion of the digraphic frequency count shows that the only double letter that
appeared was the filler XX at the end of the message. The Playfair is the only
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digraphic system which will not show double letters. Finally, because the
Playfair cannot encipher double letters, all double letters that occur in digraphs
must be broken up by the insertion of null letters. This characteristic explains
how it can be an isolog, but appear slightly longer. The three messages are all
clearly isologs, and the systems are confidently identified, lacking only the final
solution for full confirmation. Solution techniques for each of the major
digraphic system types are explained in the next chapter.
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CHAPTER 7

SOLUTION OF POLYGRAPHIC
SUBSTITUTION SYSTEMS

Section I
Analysis of Four-Square and

Two-Square Ciphers

7-1. Identification of Plaintext

Recovery of any digraphic system is largely dependent on the ability to correctly iden-
tify or assume plaintext. As with any system, isologs and stereotyped messages can
help a great deal. Pattern words can also be of assistance. With unilateral systems, pat-
terns of repeated letters provided an assist. With digraphic systems, patterns of
repeated digraphs can do the same thing. Appendix D, beginning on page D-38,
includes several types of word pattern tables. The first type, listed on pages D-38 and
D-39 shows patterns applicable to any digraphic system. The means of representing
digraphic patterns are simpler than those for unilateral patterns. The patterns identify
the repeated digraph in a word or phrase by the letters AB in each case, and non-
repeating digraphs are just represented by dashes. Here are a few examples that show
how the patterns are formed.
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7-2. Solution of Regular Four-Squares
Regular four-square ciphers, in which the plaintext squares are in A through Z order,
are slightly easier to solve than the type with all mixed squares.

a.

b.

c.

d.

With the known plaintext squares, an additional type of word pattern can be used.
Since the plaintext locations are fixed, certain words will always produce single let-
ter ciphertext repeats. The word MI LI TA RY, for example, will always produce a
repeated ciphertext letter in the first and third cipher position. When MI LI TA RY
is enciphered by the matrix shown in paragraph 6-3, it produces KL KO NS SW.
Four-square word patterns are shown on pages D-43 through D-47. The patterns are
represented by the repeated letters only, placing A, C, E, and soon in the first letter
positions of digraphs, and B, D, F, and so on in the second letter positions. Repeats
between different positions are ignored. Following these rules, a few examples of
four-square word patterns appear below.

Identifying the four-square from other digraphic systems is largely a matter of
elimination. It will include double letters, unlike the Playfair. It will not include a
high proportion of good plaintext digraphs or reversed plaintext digraphs like the
two-squares. There is no ready clue to tell whether a four-square is a regular one or
not, but it is often easiest to assume the simplest case for a start and only consider
more complicated construction when the simple case fails to produce a solution.

To demonstrate the use of four-square word patterns and recovery of the system,
consider the cryptogram shown below.

The underlined repeats give a chance to try a four-square word pattern as an entry
to the cryptogram.
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The only word with this pattern in Appendix D is INFORMATION. Placing
INFORMATION in the text, and beginning reconstruction of a regular matrix
produces the next example.

e. The recovered values have been placed in the matrix, and the alphabetic construc-
tion is apparent. Additionally, four values have been placed outside the matrix for
the moment as suggested by the plaintext Ns at the end of INFORMATION. H and
I must be in the same row as plaintext N. R and Q must be in the same column.
Several additions can now be made from the alphabetic construction. L and N fit in
the third row of the c2 matrix. Further, if H and I are in the third row of the cl
matrix, then they must be the first two letters on that row and G is the last letter of
the second row. Placing all of these in the matrix and using the partially recovered
matrix to decipher as much plaintext as possible produces the next example.
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f. Next, suppose that Q in the c1 matrix is in the keyword. If so, the U would normally
be with it. There are not enough letters left in the alphabet after the P in the cl
matrix to put both Q and U at the beginning, so Q is almost certainly right after the
P.

g. We can be fairly confident of the recoveries up to this point. A number of
possibilities present themselves, but as they are only possibilities, the work should
be done lightly in pencil. We can next try placing the Q and R in the c2 matrix. The
Q is more likely to be in the sequence than the keyword, so we will tentatively place
it in the fourth row and R in the first row. We can place P in the fourth row, also,
before Q. Another possibility is to place plaintext A on line one of the message,
forming the word ALL before INFORMATION.
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h. Next consider the plaintext RS on line two. It must certainly be preceded by a
vowel, therefore, the ciphertext digraph SM must produce a vowel in the p2 posi-
tion. The only vowel in the same row in the p2 matrix as the ciphertext M in the c2
matrix is plaintext O. S must be in the fourth column of the c1 matrix above the
plaintext O. The only logical place for the S is on the fourth row. Adding the S and
entering the values increases our solution as shown in the next example.
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i. These additions suggest several possibilities. STOP may appear in the middle of
line 2. REQUEST may be the word after INFORMATION on line 3. Placing these
values produces good alphabetical progression in the matrix and many more plain-
text possibilities.

j. From here, the solution is routine. REQUEST is the first word. HEADQUARTERS
is the last word. These values in turn fill in enough blanks in the matrix to recognize
the keywords and complete the solution. The keywords are LAUREL and HARDY.

7-3. Solution of Mixed Four-Squares
Slightly different techniques must be used when standard sequences are not used
in the p1 and p2 squares. The specific four-square word patterns of Appendix D,
pages D-43 through D-47 no longer apply, although the general digraphic patterns that
precede them on pages D-38 and D-39 are still applicable. Generally, because the
matrix construction is less orderly, more text must be known or assumed to suc-
cessfully complete the solution. The problem that follows shows how the solution can
be approached with mixed squares.
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a. The above cryptogram has been identified as a four-square. Previous messages from
the same headquarters have been signed by ADAMS or MILLER. The repeated
segments in the text suggest several possibilities for plaintext.

(1)

(2)

(3)

(4)

The AB -- AB pattern at the beginning fits the common stereotype
REFERENCE.

The repeated GBYL segments appear to be numbers, and the number of charac-
ters is exactly right to fit in the expanded stereotype REFERENCE YOUR
MESSAGE NUMBER, before the numbers. To add to this, recent messages
from the addressee have been numbered in the mid 4500s. FOUR FIVE FOUR is
probably the text of the first three numbers.

GHYR occurs at good sentence length intervals and is probably STOP.

These possibilities give enough values to begin reconstructing the matrix.

b. If you assume that standard p1 and p2 squares were used, entering the values in the
matrix produces conflicts. The squares must be mixed. To recover a mixed four-
square, divide a sheet of cross-section paper into four areas, representing the four
squares. The areas cannot initially be limited to 5 by 5 squares, although eventually
the recovered values will condense into that size. Proceed by entering each plain-
text and ciphertext pair of digraphs into the appropriate areas, maintaining the
rectangular relationship. Start new rows and columns for each pair entered unless
there are one or more values in common with previous entries. The entries for the
first seven pairs are shown in the next diagram.
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c. The first digraph pair entered was plaintext re equalling ciphertext FM, appearing
in the inner corners of the four areas. We will use the notation re=FM to represent
such pairs from here on with the plaintext in lower case. The next pair, fe=FE was
placed on the same row as the first pair because of the common letters with the first
pair. The entries continue, placing the letters on new rows and columns except
when previously used values occur. The eighth pair, es=YP, presents a new situa-
tion. Plaintext e and ciphertext Y are already on different rows. The new pair shows
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that these two rows should be combined. The diagram below shows the entry before
combining the rows. The rows are combined by writing the plaintext o of the first
row in the same position on the second row.

d. When all entries have been made and all rows and columns combined wherever
possible, the diagram appears as shown below. All plaintext that can be deciphered
from the partially recovered matrix is also filled in.
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e. More plaintext can be added at this point. The four-letter number after FOUR
FIVE FOUR must be NINE, because ZERO will not fit properly in the matrix. The
word beginning at the end of the first line is probably REQUEST, and the sender is
MILLER, not ADAMS. When these recoveries are added to the matrix, there are
enough recoveries to see the basic structure of the four-square.

f. Each area shows signs of alphabetic progression. The upper right area shows partial
rows with the letters FGI, MPT, and YZ. The lower left has rows with IK and XY.
The upper left has columns with fg, mno, and qrt. The lower right has a column with
prsu in it. These patterns suggest that the plaintext squares (upper left and lower
right) use sequences entered by columns and the ciphertext squares use sequences
entered by rows. With this in mind, the rows and columns can be rearranged. The
most obvious place to start is to rearrange the rows so that the partial sequences
FGI, MPT, and YZ are the last three rows in the upper squares.
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g. Moving these three rows put the letters mno and fg in the correct order in the upper
left area. The row before these. three rows also appears to be correctly placed. Now
examine the column arrangement. In the upper right area, the Y and Z are probably
in the last two columns in the original matrix. With the T placed directly above the
Y, there are just enough spaces to fill in UVWX between the T and the YZ on the
bottom two rows. Then, with the U appearing in the alphabetical progression, the Q
is probably the missing letter on the fourth row. The complete fourth row can be
placed in MPQTU order. Similarly, in the upper left area, the fg, mno, and qrt
columns are probably the second, third, and fourth columns of that matrix. We can
now rearrange the columns so the first five columns on each side of the center line
reflect the original order.
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h.

i.

The rearranged matrix suggests many more possibilities. In the upper left area,
uvwxyz can be filled in as was done with the upper right. In the upper right, the G
can be moved next to the F, combining two columns. Rows can be rearranged in the
lower areas. Examining the lower right area, the fourth column must include the q
by the same logic as was used in the upper right area. The correct order is pqrsu.

All the rows and columns outside the 5 by 5 squares can be systematically placed in. .
the squares by following the alphabetical order. Fully combined, the four-square
appears below.

j. The remaining values are easily recovered by using this matrix to fill in more plain-
text in the cryptogram. The additional plaintext will suggest still more plaintext,
which can be used to complete the four-square.
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7-4. Solution of Two-Square Ciphers
The solution of two-square ciphers, either horizontal or vertical, is similar to the solu-
tion of a mixed four-square, only much simpler. The worksheet is divided into two
areas by a vertical or horizontal line, as appropriate, instead of four. Plaintext is much
easier to recognize because of the transparencies that occur. Matrix reconstruction
proceeds, like the four-square, by entering digraph pairs in their rectangular
relationship, except for transparencies, which are plotted in the same row or column.
New values are plotted in new rows and columns, unless one or more values are in com-
mon with previous plots, as with the four-square. As recovery proceeds, working back
and forth between the matrix and the text, the two-squares can be combined and con-
densed to the original form, like the four-square.

Section II

Analysis of Playfair Ciphers

7-5. Security of Playfair Ciphers
Breaking into Playfair ciphers is similar to the solution of mixed four-squares in some
respects and very different in others.

a. The Playfair shares the rectangular principle of encipherment with four-squares
and two-squares, but it is complicated further by the EBDA and ERDL rules. When
recoveries are plotted, every possible rule must be considered, not just the
rectangular rule.

b. Recognition of plaintext is aided by another type of word pattern that occurs with
Playfair only. Whenever a plaintext digraph is repeated in reverse order, the cipher-
text appears in reverse order, too. This does not happen with four-squares and two-
squares. It occurs whichever rule of decipherment is used. The word DEFENDED,
for example, has a Playfair word pattern of AB -- -BA, the same as DEPARTED,
RECEIVER, and a number of others. Playfair word patterns are listed in
Appendix D, pages D-40 through D-42. The general digraphic word patterns of pages
D-38 and D-39 can also be used.
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7-6. Reconstruction of Playfair Ciphers

To illustrate the analysis of Playfair ciphers and the reconstruction of the Playfair
matrix, consider the following message. This message was sent from a brigade head-
quarters to three subordinate battalions.

a. Initial plaintext recoveries are fairly easy with this message.

The XK AV repeats on line four strongly suggest ZE RO with another four digit
letter group in between them. The numbers are most likely to be a spelled out
time.

(1)

YV TQ, appearing after the time and at the end of the message, is probably
ST OP.

(2)

The series of four letter repeats beginning with ZE RO at the end of line five
and continuing on line six before the final ST OP is probably another time.

(3)

The repeat GO OG MV CQ has a number of possibilities in Appendix D,
but in the context in which the message was sent, it is most likely to be
B AT TA LI ON.

(4)

(5) If BATTALION is correct, then the partial repeat beginning at the end of line
three represents the plaintext TA LI ON. This is again part of the word
BATTALION, but the word started out as an even letter division with the
digraph BA. TT, the next digraph, is impossible with the Playfair system, so a
null must have been inserted, probably TX. With the addition of the null, the
remainder of the word is divided into digraphs, as before, to produce the partial
repeat.

(6) The ciphertext in the middle of line four, GO OG OE GO, which deciphers
as AT TA -- AT using the common values from B AT TA LI ON, is probably
AT TA CK AT.

b. These plaintext recoveries give more than enough information to reconstruct the
original Playfair matrix. The trickiest step in matrix reconstruction is to pick the
best starting point. As every possibility for the matrix is plotted, it can get very
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complicated. Careful selection of what values to place first can reduce the com-
plexity a great deal. The cryptogram is repeated below with all recovered values
filled in to assist in finding the best starting point.

(1)

(2)

(3)

(4)

Usually the best starting point, if available, is to select a digraph pair where
there is a letter in common between the plaintext and ciphertext digraphs.
These only occur when adjacent rows or columns are involved, using the ERDL
or EBDA rules respectively. This problem does not have any recovered digraph
pairs with a common letter, so another starting point must be found.

The next best starting point is to find two digraph pairs with at least two letters
in common between the two pairs. The ro=AV and at=GO pairs share the As
and Os in common. Other pairs are also possible.

The reconstruction begins by taking one of the selected pairs and plotting each
possibility for it. All three rules must be considered. The three separate plots
that follow show the result of plotting ro=AV for the rectangular rule, ERDL,
and EBDA in turn.

The positioning of the letters is arbitrary. In the rectangular plot, we do not
know that R is to the left of A or above V. We do not know how many rows and
columns occur between the characters. We only know that the four letters form
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a rectangle if that is the correct rule. In the ERDL plot, we do not know that RA
is to the left of OV or if there is a column in between the pairs or not. Similarly,
in the EBDA plot, we do not know that RA comes above OV or if there is a row
in between. The spaces and placements are unknown until the reconstruction
has proceeded further.

The next step is to add our second pair to the first plots. Again, we have to con-
sider all three rules as we add the second pair. With three possible rules for each
pair, there could be as many as nine different possible plots after two pairs if we
did not select some letters in common to limit the possibilities.

(5)

Consider first, the addition of at=GO to the rectangular plot of the first pair.(6)

ERDL cannot be used with the second pair, since we have already placed A and
O in separate rows. To use ERDL, they must be in the same row.

(7)

When EBDA is applied to the at=GO pair and linked to the ro=AV rectangular
plot, the plot looks like this.

(8)

When we try to link at=GO to the ERDL plot for ro=AV, it cannot be done.
With A and O in the same row, the rectangular plot and the EBDA plot cannot
be applied properly. If we try to plot ERDL for at=GO, it results in six different
letters on the same row, which is not possible in a normal Playfair. Therefore,
we can cross out or erase the ERDL plot for ro=AV.

(9)

We next plot all possible rules for at=GO with the EBDA plot for ro=AV. The
rectangular rule is the only possibility. ERDL for at=GO is impossible,
because we have already placed A and O in the same column. EBDA is im-
possible, because it would place six different letters in the same column.

(10)
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(11)

(12)

(13)

The next step is to again pick a digraph pair with at least two letters in com-
mon with the letters already plotted. The most obvious possibility is the
ba=KR on line three. Following the same approach as we did with the second
pair, we find four possibilities this time.

Both st=YV and op=TQ have two letters in common with the recovered
diagrams. Checking all possibilities for each of these produces the next four
diagrams.

Various approaches can be used to further build the possible diagrams. One
approach is to try to recover more text. The repeated KT GH is certain to be a
spelled out number. If we try to decipher KT using all of our trial diagrams, all

7 - 1 6



but the third one produce plaintext -O. The third diagram produces G-. From
these results, we can rule out the third diagram, since no number has a G in the
first position. The number FO UR is the only likely plaintext with O in the
second position. We add fo=KT to the three remaining diagrams and then try
to fit ur=GH. In each case, only the ERDL rule will apply. The last of the three
remaining diagrams is also eliminated, since ur=GH cannot be plotted. We are
left with these possibilities.

(14) The second diagram above is impossible, since there is no way to fit the SY so
that it aligns with the row above it. We are finally down to a single diagram,
and with careful selection of digraph pairs to plot, we can keep it to a single
diagram. Next we will plot on=CQ, tx=CY, and ze=XK.

(15) The X, Y, and Z on the fourth line clearly belong in sequence.
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(16) The partially reconstructed matrix can now be used to add substantially more
plaintext in the message.

(17) DT CB is clearly FIVE. The word on line five, after op=TQ is AR TI LX LE
RY. The second row includes the numbers -F IV EF OU RT HR EX E-. These
additions are placed in the matrix.

(18) The missing M and W are easily placed alphabetically. The rows are placed in
correct order by shifting the last row to the top and placing the remaining rows
alphabetically. The keyword is VICTOR HUGO.

(19) To solve Playfair systems like this, it is important to remember to try all
possibilities and to keep the work as simple as possible. It is very easy to
overlook possible arrangements, so work very carefully. Always look for the
digraph pairs with the least possibilities to plot to keep the work from getting
very complex. If the square appears to be alphabetical in construction, use the
alphabeticity to help you put rows and columns in the correct order whenever
you can.
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P A R T  F O U R

Polyalphabetic  Substitution Systems

CHAPTER 8

PERIODIC POLYALPHABETIC
SUBSTITUTION SYSTEMS

Section I

Characteristics of Periodic Systems

8-1. Types of Polyalphabetic Systems
All the substitution systems explained up to this point are monoalphabetic systems.
Whether they deal with one letter at a time or several, whether they have one cipher
equivalent for each plaintext letter or more than one, they are still systems with only
one alphabet. The constant feature that makes a system monoalphabetic is that a
given ciphertext value always translates into the same plaintext value. In
polyalphabetic systems, a given ciphertext value changes its plaintext meaning.

a.

b.

c.

Most polyalphabetic systems are monographic; they encipher a single letter at a
time. Polygraphic polyalphabetics are possible, but have little practical military
value.

A typical polyalphabetic system will use from 2 to 26 different alphabets.
Polyalphabetic systems which repeat the same set of alphabets over and over again
in the same sequence are known as periodic systems. Polyalphabetic systems which
do not keep repeating the same alphabets in the same order are known as aperiodic
systems. Periodic systems, because of their regular repeating keys, are generally
less secure than aperiodic systems. Aperiodic systems, on the other hand, are
generally more difficult to use, unless the encipherment is done automatically by a
cipher machine or computer.

The classic types of polyalphabetic systems use a set of alphabets, such as the 26
alphabets pictured in Figure 8-1. Figure 8-1, known as a Vigenere square, includes
all possible alignments of a direct standard alphabet. Mixed alphabets can also be
used in such a square. If all 26 alphabets are used, any letter can equal any other
letter. There are necessarily three elements to the encryption process with
polyalphabetic ciphers, which the square and the accompanying examples
illustrate. The plaintext letters are listed across the top of the square. The cipher
equivalents are found in the 26 sequences below. The final element is the key that
designates which alphabet is used at any given time. The key letter is found on the
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left side of the square. The first example in Figure 8-1 shows the use of a repeating
key based on a keyword. Since the same key is repeated over and over again, the
resulting system is periodic. The second example uses a nonrepeating key based on
a quotation. Since this key does not repeat, it is an aperiodic system. Note that the
reuse of the same alphabets does not constitute a repeating key. For the system to
be classified as periodic, the same alphabets must be reused over and over again in
the same sequence.
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d.

e.

Another way to picture the same system as the first example in Figure 8-1 is shown
below. In this case, instead of using the complete alphabet square, only the
alphabets actually used are shown. These alphabets are used repeatedly to produce
the same results. In this example, the key is expressed in terms of the number of
the cipher sequence used, instead of by the repeating key letters.

Another type of polyalphabetic system does not use multiple alphabets in the
classic sense, but instead enciphersa message in a single alphabet. Then it applies
either a repeating key or nonrepeating key to the first encipherment to create a
polyalphabetic. One method of applying a polyalphabetic key to a monoalphabetic
encipherment is to use a numeric system and arithmetically add a key to it. For
example, here is a dinomic system, which has been further enciphered by a
repeating numeric additive. The first encipherment is labeled I, for intermediate
cipher, and the second encipherment is labeled C. The 8-digit repeating key is
labeled K. Modulo 10 arithmetic is used (paragraph 5-3f(1)).

f. Another approach to applying a polyalphabetic key begins with the built-in
encoding system used by teleprinters or computers. Paragraph 8-2 shows examples
of these.

8-2. Machine Based Polyalphabetics
When text is sent electronically by radio or wire, some form of coding must be used.
The earliest system of coding for electronic transmission was Morse code, which is still
used widely today. When teleprinters took their place in communications, a new
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binary type of coding system was devised, which can be handled by machine more
easily than Morse code can. Any binary coding system uses only two characters, which
can be represented electronically as a signal pulse or no signal pulse, high voltage or
low voltage, or one frequency or another frequency. Which of these approaches is used
depends on the equipment in use and is not our concern here. We are concerned with
how the two binary characters, whatever their electronic origin, are combined to repre-
sent alphabetic, numeric, and special characters, and how they may further be en-
crypted. Various notations have been used to represent the two binary characters—Xs
and 0s, 1s and 0s, +s and -s, or Ms (for marks) and Ss (for spaces). We will use 1s and
0s in this text, but you should be aware that you may see other notations elsewhere,
particularly in older literature.

a. The Baudot Code. Teleprinter systems generally use a 5-digit binary code known
originally as the Baudot code. There are 32 possible combinations of 5 digits, which
are not enough for the letters, numbers, and printer control characters needed for
communications. The number of possible characters is approximately doubled by
the use of upper and lower shift characters, similar to the shift key on a typewriter,
giving all characters two alternate meanings except the shift characters themselves
and the space character. There are still not enough characters for upper and lower
case letters, so all traffic passed by such teleprinter systems use capital letters only.
The standard international teleprinter code is shown in Figure 8-2. Each dot repre-
sents a 1 and each space represents a 0. Other codes are also used besides the one
shown.

The binary digits themselves are known as bauds—a term derived from the Baudot
code. The terminology has carried over into modern computer. systems as well.
Polyalphabetic keys, also in 5-digit binary form, are easily applied to coded text
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electronically by baud addition. An example of this process is shown below.
Although other rules are also possible, the addition of key and plaintext bauds is
usually accomplished by the rule, Like values sum to 0; unlikes sum to 1. (In com-
puter logic, this would be called an exclusive OR, or XOR operation.)

One advantage of this rule of addition is that adding the same key to the ciphertext
produces the plaintext again.

b. Computer Codes. Communications between computers use more than 5 digits.
Typical computer codes use either 7- or 8-binary digits (bits), giving a range of
128 characters or 256 characters. These permit upper and lower case letters, a full
range of punctuation marks and special characters, and a number of codes to con-
trol printers and communications devices as well. With the 8-bit, 256 character set,
graphics may also be enabled to permit transmitting pictures as well as text. The
most common standard for the first 128 characters, whether 7-bit or 8-bit, is the
American standard code for information interchange (ASCII) standard, which you
can find in many computer manuals. Encipherment and decipherment can be
accomplished in 7- and 8-bit operation just as was shown for 5-digit teleprinter
operations. The more complex systems are far beyond the scope of this manual, but
simple repeating key systems can be solved using the techniques discussed here.
One problem that computer codes present is that less than half of the possible 7-bit
characters are letters and numbers, and many of them stand for printer control
codes that do not print out as characters normally. Working with binary numbers
themselves is unwieldy, but any 7- or 8-bit value can be represented by two hex-
adecimal (base 16) arithmetic digits. Hexadecimal arithmetic is not explained
here, but explanations are available in many computer manuals and texts, if
needed. Hexadecimal and binary numbers are also explained in Army Correspon-
dence Course Program Subcourse SA0709.

Section II
Identifying Periodic Systems

8-3. Analysis of Repeated Ciphertext
Polyalphabetic systems normally have very flat frequency counts. The phi IC is
normally close to the random expectation of 1.00. Since other systems, including

8 - 5



variant multiliterals and aperiodic systems, also can produce flat frequency counts,
this is not enough to identify a system as periodic. The key to identifying a system as
periodic is to recognize through repeated ciphertext that a repeating key is used.

a. Repeated ciphertext can occur in two ways. Whenever the same plaintext is
enciphered by the same keys, the ciphertext will also repeat. Such repeats are
called causal repeats. The second way that ciphertext can repeat is by pure chance.
Different plaintext enciphered with different keys will sometimes produce short
ciphertext repeats. Causal repeats are much more likely to occur than accidental
repeats, particularly if they are longer than two or three characters. The example
below, repeated from Section I, shows how causal repeats occur.

The plaintext words ZERO and TWO both occur twice. The repeated ZEROs lined
up with the same alphabets, producing a ciphertext repeat. The repeated TWOs
lined up with different alphabets and did not produce a ciphertext repeat.

b. Whenever causal repeats occur, the distance between them must be a multiple of
the period length. In the example above, the two ZEROs occurred 10 letters apart.
Note that the distances are counted from the first letter of one repeat to, but not in-
cluding, the first letter of the second repeat. If the distance was not a multiple of the
period five, the ciphertext repeat would not have occurred.

c. The distance between causal repeats is a multiple of the period length. Given a
cryptogram of unknown period that includes ciphertext repeats, the period can be
determined, or at least narrowed down, by analyzing the distances between repeats.
The period must be a factor of the distance. The factors of a number are all the
numbers which divide evenly into that number. When there is more than one
repeat, the period must be a common factor of all such distances. For example, if a
cryptogram has repeats that are 28, 35, and 42 letters apart, the only number that
evenly divides all the distances is 7. The period must be 7. Utility tables showing
common factor numbers are in Appendix E.

d. Here is a more complex example. Suppose a cryptogram suspected of being periodic
includes the following repeats.

8 - 6



The next step after determining the distances is to list the factors for each repeat, as
shown below.

No numbers evenly divide the distances between all the repeats. In such cases,
either the system was not a periodic system, or one or more of the repeats is
accidental. In this problem, the SRM repeat is probably accidental, because it is
the shortest. Discarding the SRM repeat from consideration, the remaining repeats
all have common factors of 2, 3, and 6. Where more than one factor is possible, it is
generally safest to assume the largest. If the period is actually 3, for example, it will
reveal itself by repeated alphabets as the cryptogram is solved.

8-4. Analysis by Frequency Counts
Periodic systems can be identified even when there are no repeated words in the text.
Causal single-letter ciphertext repeats will still occur and significantly outnumber the
accidental single-letter repeats.

a. To find the causal single-letter repeats, take frequency counts for each alphabet
according to its position in the suspected repeating cycle. If the period is incorrect,
the separate frequency counts will remain flat. If the period is correct, the separate
frequency counts will be as rough as plaintext on the average. Recognizing when a
count is rough or flat is difficult by eye, particularly with anything but very long
cryptograms, but the phi test performed on each separate alphabet gives a reliable
indication. Taking separate frequency counts by position for each suspected period
and then calculating phi tests on each is a laborious and time-consuming process by
hand. It can be done when necessary, but it is best performed by computer support.
Figures 8-3, 8-4, and 8-5 show computer generated output for suspected periods of 6,
7, and 8 for the following cryptogram.
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b. The average ICs for each period in Figure 8-3 and 8-4 are flat, The average IC for a
period of 8 in Figure 8-5 is much higher than the other two. This clearly shows that
the period of 8 is more likely correct than periods of 6 and 7.

c. The computer program used to generate these examples is listed in Appendix F. It is
written in GW BASIC, and is readily adaptable to many different computers.
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CHAPTER 9

SOLUTION OF PERIODIC
POLYALPHABETIC SYSTEMS

Section I
Systems Using Standard Cipher Alphabets

9-1. Approaches to Solution

When standard alphabets are used with monoalphabetic systems, three approaches
are possible. The simplest occurs when text can be immediately identified. Identifica-
tion of only two or three letters in a standard unilateral alphabet is sufficient to
reconstruct and confirm the entire alphabet. The other two methods, where text is not
readily identifiable, are to match frequency patterns to the normal A through Z pat-
tern and to generate all possible solutions. All three of these methods also apply to
standard alphabet periodic polyalphabetics.

9-2. Solution by Probable
When the alphabets in a periodic system

Word Method
are known or suspected to be standard, the

identification of one plaintext word is usually enough to recover the whole system. The
period must be identified first, as explained in the previous chapter, either by analysis
of repeat intervals or by the phi test. Then when a word is recognized from repeats or
stereotypes, the alphabets can be written and tried throughout the cryptogram. If they
produce good plaintext throughout, the problem is solved.
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Factor analysis does not show us a clearcut period length, but if we select the four
letter repeat as the most likely causal repeat, 7 appears to be the correct period. If we
also try STOP as the four letter repeat, it gives us the following text and alphabets.

From the partial plaintext that this produces, STOP is clearly correct. Such words as
RECONNAISSANCE, HEAVY, and REINFORCED are apparent, any one of which
will complete the solution. For another type of probable word approach, applicable to
periodics or aperiodic, see paragraph 10-3c on crib dragging.

9 - 2



9-3. Solution by Frequency Matching
With monoalphabetic systems using standard alphabets, the solution was very easy
whenever a message was long enough to give a recognizable pattern. The characteristic
pattern of highs and lows of a standard sequence cannot be easily concealed. The same
technique applies to polyalphabetic systems, although messages necessarily must be
longer to produce a recognizable pattern for each separate alphabet.

a.  Factor analysisshows common factors of three and six for all repeat intervals.     
Based, on this, a frequency count for six alphabets is produced, as listed in
Figure 9-1. If the period were actually three, the first and fourth, the second and
fifth, and the third and sixth frequency counts would be similar. This is clearly not
the case, so the period is confirmed as six.
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b. The easiest patterns to match are generally those with the highest ICs. The first,
second, and fifth alphabets have the highest ICs, and all can be matched fairly
easily. In the first, plaintext A equals ciphertext B. In the second, plaintext A
equals ciphertext A, and in the fifth, plaintext A equals ciphertext O. Other
alphabets can be matched, too, but using these as an example, the partially
reconstructed text is shown below.

c. The letter combinations produced by the three recovered alphabets are consistent
with good plaintext. Expanded plaintext can be recognized in many places. The
first word is ENEMY for example. Filling in added plaintext is a surer and quicker
means of completing the solution at this point than trying to match more alphabets.
Here is the complete solution.
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9-4. Solution by the Generatrix Method
With standard alphabets or any known alphabets, the method of completing the plain
component can be used. This method, when applied to periodic systems, is commonly
called the generatrix method. The advantage of this method over frequency matching
is that it will work even with fairly short cryptograms.  Just as with a monoalphabetic
system (see paragraph 4-11), the first step is a trial decryption at any alphabet align-
ment, followed by listing the plain component sequence vertically underneath each
letter of the trial decryption. Whenever the plain and cipher sequences are identical
and in the same direction, no trial decryption is necessary. The key difference with
periodic systems is that the process must be applied to the letters of each alphabet
separately. Plaintext will not be immediately obvious when you look at the generated
lines of letters from only a single alphabet, so selection must be initially based on letter
frequencies and probabilities rather than recognizable text. The process is illustrated
with the following cryptogram enciphered with direct standard alphabets.

a.

b.

c.

The cryptogram has a period of five, which can be confirmed either through
periodic-phi tests or factor analysis of all the repeats, including two letter repeats,
which are not underlined.

The most obvious step to try is to substitute STOP for the four letter repeat. It does
not produce plaintext elsewhere, however. More powerful methods of solution are
required.

The cryptogram can be readily solved by the generatrix method. The first step is to
separate the letters produced by each alphabet. The letters from each of the five
alphabets are listed separately below. Notice that if you read all the first letters, it
produces the first group of the cryptogram. The second letters produce the second
group and so on.
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d. No trial decryption is required, because the same sequence is expected for both the
plain and cipher components. Therefore, the next step is to complete the plain com-
ponent sequence for each letter grouping. This is illustrated in Figure 9-2.
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e. To aid in selection of the most likely generated letter sequences, numeric
probability data has been added to each line of the listing. The numbers listed
below each letter are assigned on the basis of logarithmic weights of the letter
probabilities. To the right of each group of logarithmic weights is the sum of the
weights for that group. Using this kind of weighting lets us determine the relative
probabilities of each line by adding the weights for each letter. The weights in
Figure 9-2 have been added according to the log weights shown in Table 9-1.

f. The listing in Figure 9-2 was computer generated. When this work must be done
manually, it is easier to generate the sequences without the probability data. Then
scan the generated rows for each alphabet to visually select those with the most high
frequency letters. Finally, if necessary, the probability data can be added only for
the selected rows.

g. Only rarely will the correct rows consist entirely of those with the highest totals.
Normally, you will have to try different combinations of the high probability rows
until you find the correct match. The best place to start is with those rows that
stand out the most from others in the same alphabet groups. In the illustrated
problem shown below, alphabets four and five provide the most likely starting
point. In each case, the sum of the log weights for one row are well above any others.
These are listed below, superimposed above each other with room for the other three
alphabets to be added.

1:
2:
3:
4: MRELTNEARHTT 97

5: YENESTIVETN 88

h. As the rows are superimposed, the plaintext will appear vertically. The next step is
to see which high probability rows from other alphabets will fit well with the
starting pair. Trying both of the two highest probability rows for alphabet three
produces the next two possibilities.
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i. Reading the plaintext vertically, the grouping on the right is better than the one on
the left. The DTS sequence in the left grouping is unlikely, and all the letter com-
binations on the right are acceptable. Furthermore, the EMY combination at the
beginning of the right grouping suggests ENEMY. The letter sequences for the first
two alphabets which begin with E and N respectively are both high probability
sequences. The complete solution is shown below.

“ENEMY HAS RETAKEN HILL EIGHT SEVEN THREE IN HEAVY
FIREFIGHT LAST NIGHT”

Section II

Systems Using Mixed Alphabets
With Known Sequences

9-5. Approaches to Solution
When mixed sequences are used in periodic systems, a variety of different techniques
can be used to solve them. When the plain and cipher sequences are known, the same
techniques used with standard alphabets can be used, adapted to the known
sequences. When one or both of the sequences are unknown, new techniques must be
used. Each situation is a little different. The major paragraphs of this section deal with
each situation: both sequences are known, the ciphertext sequence is known, or the
plaintext sequence is known. Techniques for solving periodics when neither sequence is
known are covered in the next section.
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9-6. Solving Periodics With Known Mixed
Sequences
Exactly the same techniques that were used with standard alphabets can be used with
any known mixed sequences.

a.

b.

c.

Successful assumption of plaintext allows you to directly reconstruct the cipher
alphabets, as before.

The generatrix method works, making sure that a trial decryption is first performed
with the sequences set at any alignment. All possible letter combinations are then
generated by completing the plain component sequence, as before. The key points
to remember are to perform the trial decryption and to use the plain component as
the generatrix sequence, not a standard sequence.

Frequency matching also works, but there are some differences in its application.
Frequency counts must be arranged in the cipher sequence order, not in standard
order. The pattern that the frequency counts are matched to must be adjusted to
the order of the known plain component. Rearrange the patterns of peaks and
troughs to fit the plain component. For example, shown below is the pattern for a
standard plain sequence and the pattern that results if a keyword mixed sequence
based on POLYALPHABETIC is used as the plain component.

The new pattern resulting from the mixed plaintext sequence is just as easy to
match frequency counts to as the more familiar standard pattern. If it should prove
difficult to match by eye alone, there is also a statistical test, called the chi test,
which can be used to aid the matching process. Paragraph 9-7 demonstrates the use
of the chi test.

9-7. Solving Periodics With Known Cipher
Sequences
The technique of frequency matching can be used any time the cipher sequence is
known, whether or not the plain sequence is also known. When the plain sequence is
known, the frequency patterns of the cipher sequences are best matched to the ex-
pected plain pattern as explained in paragraph 9-6. When the plain sequence is un-
known, the frequency patterns of the cipher sequences can be matched to each other.
In either case, the key is that the known cipher sequence allows the frequency count to
be arranged in the order of the original cipher sequence. The following problem
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demonstrates frequency matching with a known cipher component sequence. The
cipher component sequence in the problem in Figure 9-3 is a keyword mixed sequence
based on NORWAY.

.

a. Examination of the frequency patterns in Figure 9-3 shows that they do not match
the usual standard sequence-pattern. This means that the plain component
sequence was not a standard sequence.

b. If the cipher sequences can be correctly matched against each other, the crypto-
gram can then be reduced to monoalphabetic terms and solved easily.

c. Figure 9-4 is a portion of a computer listing that matches the frequency count of the
cipher letters of the first alphabet with the frequency count of second alphabet
letters at every possible alignment. The alignments are evaluated by the chi test. In
the chi test, each pair of frequencies for an alignment is multiplied. The products of
all the pairs are totaled to produce the chi value for that alignment. Figure 9-5
shows the computation carried out for the first alignment. The chi test is also called
the cross-product test.
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d. Figure 9-6 shows the highest chi values for each match of the first alphabet with the
other four alphabets. For all matches except the fourth alphabet, the chi values
were clearly the highest. Two matches are shown for the fourth alphabet, because
the difference between the two values is not significant. Either match could be the
correct one.
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e. To resolve which of the two matches with the fourth alphabet is correct, the highest
chi values for matches between the second and fourth and the third and fourth
alphabets have also been determined. These are shown in Figure 9-7.

f. The matches of alphabet four with alphabets two and three clarify which of the
matches with the first alphabet was correct. This becomes apparent when we set up
the other four alphabets.

g. The match of N of the first alphabet with P of the fourth alphabetic correct. The
second alphabet and third alphabet matches confirm this.
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h. The next step in the solution is to reduce the cryptogram to monoalphabetic terms
using the matches just determined.  An A through Z sequence is arbitrarily used for
the plain component, and the message is decrypted just as if it were the original.

i. Reduced to monoalphabetic terms, many more repeats in the text that were sup-
pressed by the multiple alphabets now appear.  The solution is completed the same
as any other monoalphabetic system.

9-8. Solving Periodics With Known Plaintext
Sequences by Direct Symmetry
When the plaintext sequence is known, but not the ciphertext sequence, a solution
technique known as direct symmetry is possible. Direct symmetry depends on the
probable word method for the initial entry into the cryptogram. It makes use of the
fact that the columns can be reconstructed in their original order as recoveries are
made. Consider the next example, which uses a standard plaintext sequence.
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a. The period is five. The 14 letter repeat is probably RECONNAISSANCE.

b. With recovered letters filled in, we can see that the beginning phrase is the
stereotype, RECONNAISSANCE PATROL REPORTS.
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c. With a known plain component, the columns are in their original order. This means
that the partially reconstructed cipher sequences are also in the right order. Each
cipher sequence is the same sequence, and whatever one row reveals about the spac-
ing of letters can be transferred to other rows as well. For example, in the second
row, X follows immediately after W. X can then be placed after W in row three.
Similarly, all common letters can be placed by carefully counting the intervals and
placing the same letters at the same intervals in each row. Here is what the matrix
looks like after all such values are placed.

d. Filling all the new values into the text reveals many more possibilities. Completion
of the solution is routine from this point.

e. The direct symmetry technique can also be used as an alternate method when the
cipher sequence is the known sequence. The matrix can be inverted, placing the
cipher sequence on the top of the matrix and the plaintext equivalents inside in
separate rows for each alphabet. Each row will be the plaintext sequence in the
correct order. Horizontal intervals recovered in one row can then be duplicated in
each sequence just as was demonstrated above for cipher sequence recovery. Unlike
the technique of frequency matching, it depends on successful plaintext assump-
tions, however. It is not as powerful a method of solution, but if plaintext can be
readily identified, it may be the quickest way to solve a cryptogram.
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Section III

Solving Periodics With Unknown Sequences

9-9. Solving Periodics by Indirect Symmetry
When neither the plaintext nor the ciphertext sequence is known, the matrix cannot be
initially recovered with sequences in the correct order. Frequency matching cannot be
used, either. However, some of the interval relationships are preserved even when the
columns are not placed in the correct order, and these interval relationships can be
exploited to aid in matrix recovery.

a.

b.

c.

To illustrate how interval relationships are preserved, consider the following two
matrices. The first is the matrix in its original form. The second is the same matrix,
rearranged with the plain component in A through Z order. This is the form in
which you will normally recover a matrix with unknown sequences until enough is
known to rearrange the columns in the correct order.

The key principle to understand when working with ananalyst’s matrix, like the
second one above, is that every pair of columns and every pair of rows represents an
interval in the original matrix. To illustrate this, look at the plaintext A column
and the plaintext G column in the bottom matrix. The letters D and R appear in
the first cipher sequence. If you count the distance between the D and R in the
original (top) matrix, you see that the interval is nine. Similarly, the interval for the
other pairs in the two columns, R and X, U and P, and M and S, are also nine. For
any two columns that you compare, the horizontal interval between the letters in
each alphabet will be the same. The interval will not always be nine, of course. It
depends on which two columns you are comparing. The point is that between any
pairs in the same row in the same two columns, the interval will be the same.

Next compare the letters in the first cipher sequence and the second in the bottom
matrix. In the first column, the letters D and R appear, which we already noted are
nine letters apart horizontally in the original matrix. The letters R and X appear in
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another column in the first and second sequences, as do U and P, and M and S. The
first and second cipher sequences are an interval of nine apart. Whichever pair of
letters you look at in the first and second cipher sequences, they are nine apart in
the original cipher sequence. Each pair of cipher sequences represents a different
interval. For example, the interval between the first and third cipher sequence is
eleven. The interval between the first and fourth is seven. The interval between the
second and third is two, and so on.

d. There are a number of ways in which we can use an understanding of these interval
relationships to help solve a polyalphabetic cryptogram. The use of interval
relationships where sequences are unknown and columns are out of order is called
indirect symmetry. This contrasts with the earlier situation with known sequences
and columns in the correct order, where we used direct symmetry to aid in the
solution.

e. To put indirect symmetry to use, consider the following example. Initial recoveries
in a polyalphabetic system have produced the following information.

f. In comparing the plaintext A and E columns, we see that the letters R and T and the
letters M and F are the same interval apart. We do not know what the interval is,
but we know it is the same in each case.

g. The same interval appears when we compare the first and third cipher sequences,
where R and T appear in the first column. Since we know the interval will be the
same for any pair of letters between the first and third sequences, and we know M
and F have the same interval as R and T, we can add the letter F in the plaintext I
column in the third sequence under the letter M.

h. Any time we can establish an interval relationship for two pairs in a rectangular
pattern as above, and can find three of the four letters, also in a rectangular pattern
elsewhere, we can add the fourth letter to complete the pattern. The pairs must be
read in the same direction in each case. Notice that we cannot add F in the plain-
text G column in the first sequence. The interval from the first to the third sequence
is not the same as the interval from the third to the first.

i. Matching pairs are usually found by reading horizontally in one case, and vertically
with one letter in common in the second case, as in the above example. Matching
relationships may be found anywhere in matrix, however, and are not restricted to
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j.

cases with one letter in common. You can find most such matching pairs by examin-
ing every column in which you have recovered at least three letters. For each letter
in the column, look for a match with letters on the same row that are the same as one
of the other letters in the column. When you find such letters, check for every possi-
ble complete rectangular relationship, and see if you can find the same relationship
with one letter missing elsewhere. Often the addition of one or two letters is all you
need to recognize more plaintext in the cryptogram and complete a solution.

If you have reason to believe that the plaintext sequence is the same as the cipher
sequences, you can use the plaintext sequence in establishing interval relationships,
too. All the techniques that apply to the ciphertext sequences apply to the plaintext
sequence as well, when it is the same sequence.

9-10. Extended Application of Indirect Symmetry
Indirect symmetry can be used in other ways, too. For example, when enough letters
have been recovered, you can list all the pairs of letters between each pair of sequences,
and develop partial decimated chains of letters for each, as was explained in paragraph
4-8 with monoalphabetic substitution. These partial chains from different alphabet
combinations can then be combined together geometrically to recover the original
sequence. This technique is illustrated in the following indirect symmetry problem.

a. Through recognition of the stereotyped beginnings and the use of many numbers,
the text shown has been recovered, and the recovered values filled into the matrix.
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More values can be filled into the text, but we will first concentrate on the applica-
tion of indirect symmetry.

b. To recover additional values through indirect symmetry, examine each column
with more than two recovered letters in it. Beginning with the fifth column, take
each letter in turn, and scan the same row as the selected letter for letters that are
the same as those in the column. The first letter, Z, has no letters in common in its
row with the letters M, B, P, and N.

c. For the second letter, M, the common letter Z does appear in its row. Having found
a common letter, examine each rectangular relationship that exists between the two
columns. We first see that Z and W have the same interval as M and Z. Links with
this common letter will not add any more values, however.

d. The next rectangular relationship shows that P and L have the same interval as M
and Z. Reading M and Z vertically, we look for P or L on the same rows as the M
and Z to complete the relationship. We find neither P in the second row nor L in the
first row. If either occurred, we could fill in the other. The letters can be written in a
column off to the side for future use.

e. Having observed all relationships from the column with the common letter Z, we
look for another column with a common letter on the M row. B and P do not occur
except in our added column. The letter N does occur in the second row, however.
Examining relationships in the N column, we see that Z and J have the same inter-
val as M and N reading horizontally. With that established, we read M and N ver-
tically and look for Z in the second row or J in the last row. This time we find Z in
the second row. We can add J in the last row in the same column with Z to complete
the rectangular relationship.

f. Continuing this process, all the letters shown in bold print can be added to the
matrix without making any new plaintext recoveries.

g. It would be easy at this point to return to plaintext recovery to complete the solu-
tion, but another technique can be used to recover the original cipher sequences and
rebuild the matrix. This technique involves listing all links that result by matching
each cipher sequence with every other cipher sequence. Sequence 1 is matched with
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sequences 2, 3, 4, and 5, in turn. Then sequence 2 is matched with 3, 4, and 5;
sequence 3 is matched with 4 and 5; and sequence 4 is matched with 5. If the plain-
text sequence were the same as the ciphertext sequence, it would only have been
necessary to match the plaintext with each cipher sequence to get all combinations.
When all links have been plotted and combined into partial chains wherever possi-
ble, the results are shown below.

h. Each set of partial chains represents a decimation of the original sequence.
Sometimes, you will be fortunate at this point to find that one of the partial chains
directly represents the original sequence (decimation one). When this happens, the
original sequence is the obvious starting point. It does not occur in this example, so
the best technique is usually to select a set with one of the longer chains as a
starting point and relate all other sequence combinations to it. Notice that the
chains produced by sequences 1-2 and by sequences 2-3 are obviously produced by
the same interval, since many of the partial chains are identical. They make a good
starting point for this problem. Begin by listing each chain fragment on paper,
horizontally. Write the separate chains in different rows so they will not run into
each other.

i. The next step is to relate other chains to the existing plot. By examining the inter-
vals or patterns that letters from other chains have in relation to the starting chains,
they can be added by following the same rule. For example, the 1-3 combination can

9-21
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k.

l.

be added by observing that it will fit the starting chains by skipping every other
letter. This will also enable linking the fifth fragment, AS, with the fourth. After
adding all the 1-3 chains, the plot looks like this example.

Next, search for another combination that can be added to the plot. The 3-4 com-
bination links by counting backwards every fifth letter, as shown by the V and C of
the NZIVC chain. This ties all the chain fragments together into one longer chain.
When all combinations are added, each by their own rule, it results in almost com-
plete recovery.

This technique is known as linear chaining. Sometimes you will be unable to com-
bine the fragments into one long chain. When all intervals are even, you will always
end with two separate 13-letter chains, which may be combined by trial and error or
by figuring out the structure of the original matrix. A second technique, called
geometric chaining, which could have been applied here also, is explained in
paragraph 9-11.

Continuing, the chain above must be a decimation of the original sequence. Since V,
W, and X are spaced consistently nine apart, trying a decimation of 9 produces the
next sequence.

m. With G missing from alphabetical progression, the sequence is keyword mixed,
based on GAMES. We can now return to the polyalphabetic matrix and rearrange
the columns using the GAMES sequence on each cipher row.
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n. The unused letters can be determined by returning to the plaintext and deciphering
the rest of the message. The plaintext sequence turns out to be a simple transposi-
tion mixed sequence based on OLYMPIC. The repeating key is KOREA.

o. The approach shown to solving this problem is not necessarily the way in which you
would solve it in actual practice. It would probably be more effective to return to
the plaintext earlier than was done in this example. This approach was selected to
show the variety of indirect symmetry techniques that can be used, not necessarily
because it would yield the quickest solution.

9-11. Solution of Isologs
Whenever isologs are encountered between periodic messages with different period
lengths, it is possible to recover the original cipher sequences without any initial plain-
text recovery. The cryptograms can then be reduced to monoalphabetic terms and
quickly solved. Two different techniques may be used, depending on whether the same
alphabets or different alphabets are used in the isologs.

a. When isologous cryptograms use the same alphabets with different repeating keys,
the cipher sequences can be recovered by the indirect symmetry process. Take the
following two messages, for example.

9-23



(1) To solve the isologs, the two messages are first superimposed with the alphabets
numbered for each.

(2) With periods of 3 and 4, there are 12 different ways in which the alphabets of the
first are matched to the alphabets of the second. These begin with the first
alphabet of message 1 matched with the first alphabet of message 2 and con-
tinue through alphabet 3 matched with alphabet 4. After these 12 matches, the
cycle of matches starts over again. For other periods, the number of different
alphabet matches is the least common multiple of the two period lengths. The
least common multiple of 6 and 4 is 12. The least common multiple of 6 and 9 is
18. For periods of 8 and 9, 72 different alphabet matches are required.

(3) Analysis continues by plotting the links for each alphabet pair. For example,
the first link is A1=D1, the second link is O2=C2, and the third link is P3=F3.
The next example shows all links plotted and combined into partial chains.

9 - 2 4



(4) The 1-3 plot shows that the same alphabets were used in both these positions.

(5) The partial chains can be combined into one long chain by a process of
geometric chaining. Geometric chaining will often produce results when linear
chaining is not effective. Geometric chaining is plotted horizontally and ver-
tically, instead of in one straight line. Relationships between alphabet matches
can be discovered more readily with this method.

(6) Geometric chaining begins, as with linear chaining, by selecting one alphabet
match to plot horizontally. We can select the 1-1 match for its 5-letter chain as a
starting point. Next, select a second alphabet match to intersect it plotted ver-
tically. For our example, we will use the 2-2 match, producing the following in-
itial plot.

(7) To this initial plot, we add as many other fragments from the 1-1 and 2-2
matches as we can at this time. We can also set up plots separated from these
for each one that cannot be linked to it.
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(8)

(9)

(10)

The next step is to find another alphabet match that can easily be added to the
plot. For example, the 1-2 match proceeds in the diagram along a lower left to
upper right diagonal, as shown by the NSC and XJ fragments. All the 1-2 frag-
ments can be added by the same diagonal rule. This ties in the separate plots
from above, also.

Each additional alphabet combination can be added to the plot now. In many
cases, you may see different possibilities for rules. For example, the 3-4 match
can be seen to proceed by an up 3, left 1 rule, as shown by the TO link. A simpler
equivalent is to plot by the upper left to lower right diagonal, as shown by the
PK link. The simplest way to describe the 3-3 match is up 1, right 2, as shown
by the TK or BY links. This is similar to a knight’s move in chess. When all
matches are plotted, they produce this diagram.

The rows can easily be extended into one 26-letter chain at this point, but if
alphabetic progression can be spotted by any other rule, it can be used instead.
For example, starting with the V in the upper left part of the diagram, VWXY
appears by a descending knight’s move. Continuing from the Y that repeats
near the left side, the sequence can be extended further. The complete
sequence appears below.

9 - 2 6



(11) Using the new recovered sequence and the relationships between the alphabets
of messages 1 and 2, the matrices for both messages can be set up. Using the
first cipher sequence for message 1, all the cipher sequences for message 2 can
be lined up with it using the links already plotted. Here is how the message 2
alphabets line up with alphabet one. The first 1-1, 1-2, 1-3, and 1-4 links from
the isologs are shown in bold print to demonstrate how they were lined up.

(12) Similarly, the alphabets in the first matrix can be completed by plotting the
relationships between the second message and the first. The solution then
becomes a matter of reducing them to monoalphabetic terms.

(13) In cases where the two periods have a common factor, the sequences can still
be recovered, but they cannot be fully aligned. In this case, the chi test can be
used to match the sequences by frequencies, if necessary, once the sequences
are known.

b. A different technique must be used if different alphabets are used between the
isologs, not just different repeating keys. For example, consider the next two
messages.
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(1)

(2)

The sequences are different in the two messages, and they cannot be directly
chained together. If you listed the links resulting from the two messages using
the previous technique, they would lead nowhere and contradictions would
quickly develop. The cipher sequences of each must be kept separate.

The method of recovering the cipher sequences when they are different is to set
up periodic matrices one over the other, as shown below. Message 1 and message
2 equivalents are then plotted in the correct sequence for each in the same
columns. Initially, this will result in more than 26 columns, but as incomplete
columns are combined with each other, the matrices will collapse to the correct
width. This method could be used with more than two isologs also, by superim-
posing as many matrices as there are isologous messages.
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(3) The first three groups of each message are plotted above. Each time a previously
used letter appears in the same sequence, the two columns can be combined.
For example, in message 2, the Zs in the third sequence allow those two columns
to be combined, and similarly, the Xs in the fourth sequence can be combined.
In the next example, the complete messages are plotted and all possible
columns are combined.

(4) These matrices can easily be completed by direct symmetry, remembering that
the sequence in each matrix is different.

(5) Either cryptogram can now be reduced to monoalphabetic terms and solved, as
before.
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CHAPTER 10

APERIODIC POLYALPHABETIC CIPHERS

10-1. Simple Manual Aperiodic Systems
Chapter 9 showed that periodic polyalphabetic systems are generally more secure than
monoalphabetic systems. However, the regular, repeating nature of the keys in
periodic systems are a weakness that an analyst can exploit. Using factor analysis or
the phi test, the analyst can readily determine how many alphabets there are and
which letters are enciphered by which alphabets. Aperiodic polyalphabetic systems
eliminate the regular, repeating use of alphabets so the analyst cannot easily tell which
letters are enciphered by which alphabets. There area number of ways to use a limited
set of alphabets but suppress their regular repetition. The following subparagraphs
show the most common types of these, and briefly discuss their weaknesses and
approaches to their solution. They are presented to make you aware of the possibility
that such techniques can be used, but no detailed explanation of their solution is
given.

a.

b.

Word Length Aperiodic. The simplest type of aperiodic changes alphabets with
each word instead of each letter. The analyst cannot tell which letters are encrypted
by which alphabet until the text is recovered. However, the major weakness of this
system is that when repeats occur, they are likely to be word length, and plaintext
word patterns show through as clearly as with monoalphabetics. When alphabets
are known, the generatrix method makes the plaintext obvious.

Numerically Keyed Aperiodic. Another approach, similar to word-length
encipherment, is to change alphabets after a number of letters, determined by a
numerical key. The numerical key is often based on the repeating key. The key is
generated by the same process used with a numerically keyed transposition
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sequence. The letters in the repeating keyword are numbered alphabetically. Then
the key determines how many letters are enciphered consecutively by each
alphabet. For example, here is a short message enciphered by a numerically keyed
aperiodic based on the keyword BLACK.

This system, while more complicated than a word-length aperiodic, allows many
repeats and patterns to appear. When the alphabets are known, use of the
generatrix method also quickly reveals the plaintext.

c. Interruptor Letter Aperiodic. Another approach to breaking up the cyclic nature
of periodic systems is through the use of an interruptor letter. In interruptor letter
systems, the alphabets are used in rotation like a periodic system, but whenever a
preselected plaintext (or alternatively, ciphertext) letter is encountered, the rota-
tion is interrupted and encipherment returns to the first alphabet. This is a more
secure method than the previous two, but it can have the effect of creating repeats
that would not otherwise occur. For example, if a plaintext R is used as an interrup-
tor letter, every time REINFORCEMENTS appears in the text, encipherment from
the second letter on will be identical every time. The letter after the initial R will be
enciphered by the first alphabet each time because of the interruption. The same
thing will happen with any word that begins with the interruptor letter. Use of a
ciphertext interruptor letter instead of a plaintext letter will avoid many of these
repeats, but the interruptions will generally occur much less often in such a case.

10-2. Long-Running Key Aperiodic
Much more common than the simple manual aperiodic systems described in the
previous paragraph are those that use a long-running, ever changing key. These
systems may be enciphered manually, by cipher machine, or by computer, as first dis-
cussed in paragraph 8-1. Figure 8-1 gave an example of using a book key where the key
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letters were a quotation. A quotation, particularly from a book, provides a ready source
of long-running keys, but it is relatively unsecure, because the key itself is so orderly.
More often, the keys will be random or pseudorandom. The keys are applied to the
plaintext using an alphabet chart like the Vigenere square in Figure 8-1. The keys may
be generated by a pseudorandom, repeatable process or by a random, nonrepeatable
process. Both the sending and receiving cryptographer must have a copy of the same
book or pad of keys. When these are intended for single usage of the keys, the system is
called a one-time pad system. Truly random one-time pad systems are absolutely
unbreakable when used properly. When keys are reused, however, whether by mistake
or by design, the messages with the reused keys are likely to be recoverable. Manual
one-time pad systems are slow systems to use and present logistics problems for any
large scale usage. The volume of keys must be at least equal to the volume of messages
to be sent, When more than one communications link shares the use of copies of the
same pad, careful procedures must be set up to prevent reuse of the same keys by dif-
ferent users.

10-3. Solution of Long-Running Key Aperiodic
The solution of messages enciphered in long-running key systems may be possible in
three situations. First, the key generation process may be known in advance from prior
recoveries or other sources. Second, the keys may be so orderly that they are
recognizable when partially recovered, as can occur when plaintext is used as the
source of keys. Third, the same sequence of keys is reused. We are primarily concerned
with the third case, where keys are reused.

a. Depth Recognition. A reuse of long-running keys is called a depth. Messages using
the same keys are called messages in depth. If the keys begin at the same point in
two or more messages, the messages are in flush depth. If the keys begin at different
points in two or more messages, but include reused keys for at least part of the
messages, they are in offset depth. The solution of messages in depth first requires
you to recognize that the depth exists.

(1) One way to recognize depth is through exploitation of indicator systems. In one-
time pad systems and in many types of cipher machine or computer systems,
the starting point or settings for the keys must be known by the enciphering and
deciphering cryptographers. This information on the keys is often passed from
cryptographer to cryptographer through the use of an indicator system. The
first way to recognize a depth is to find two messages or transmissions with
identical indicators. Identical indicators will often tip-off that a flush depth is
occurring.

(2) The second way to recognize depth is to find repeated text between two or more
messages. Except for short accidental repeats, repeated ciphertext will only
occur when the same plaintext is enciphered with the same keys. In periodic
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systems and simple manual aperiodic, this will often occur within a single
message as the same keys are reused. With long-running key aperiodic, this
will only occur between messages when keys are reused. If all depths are expec-
ted to be flush depths, the search for repeats is a matter of superimposing
messages and looking for repeats in the same position in each message. If depths
are offset, they are more difficult to find by inspection alone.

(3) The third way to recognize depth is to use a type of coincidence test known as
the kappa test. Whether whole words and phrases are repeated using the same
keys or not, individual characters using the same keys will occur frequently
when depths are present. When two messages are matched together, letter by
letter, and do not use the same keys, 1 out of 26 letters (or 3.85 percent) will ran-
domly match. Of course, if a different alphabet is used, or if characters other
than letters are also used, the expected number of matches by chance alone will
be 1 out of the total number of different characters used. On the other hand, if
the messages are correctly placed in depth, a letter by letter comparison (the
kappa test) will produce matches about 6.67 percent of the time. Also, the
results can be expressed as a kappa index of coincidence showing the ratio of
observed coincidences to random expectation. As with searching for repeats, it
is much easier to find flush depths than it is to find offset depths, but with com-
puter support, messages can be matched in every possible alignment to search
for depths.

(4) As an example of depth recognition, consider the three messages that follow.
Each has similar indicator groups that suggest the messages may be in depth
with each other. Messages 1 and 2 have identical indicators. Message 3 differs
only in the last digit of the second group.
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(5) There are no repeats longer than three letters between any of the three
messages. Because of the identical indicators, we first try to match messages 1
and 2 at a flush depth using the kappa test. The number of matches multiplied
by 26 and divided by the number of comparisons equals the kappa IC. Do not
count the indicator groups in the comparisons.

(6) As shown by the kappa test, the number of matches is well above random expec-
tation. The two messages appear to be in flush depth with each other. Next we
try message 3 matched with the first two at a flush depth.
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(7) The flush match of message 3 is clearly not a correct match, because of the low
kappa index of coincidence. We next try offsets of 1, 2, 3, 4, and 6 letters to the
right.
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(8) The offset of five is clearly the best match of those tried, and the kappa index of
coincidence is a good value for a correct match. The three messages are now
correctly placed in depth.

b. Depth Reading. When the messages are superimposed properly, they can be solved
by a process known as depth reading. With only a few messages, the process of
applying the key must be known. With manual systems, standard alphabets are
commonly used. With cipher machine or computer based systems, the process of
baud addition is usually known or can be figured out easily. The three messages in
our example use the standard alphabet Vigenere square of Figure 10-1.
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(1) With three messages in depth, almost any correct assumption of plaintext will
lead to a quick solution. For example, trying the word REPLACEMENT as the
first word of message 3 produces the results shown below.

(2) Recovering the key from the assumption of REPLACEMENT and using it to
decipher the other two messages produces good segments of plaintext in each
message. It is easy to build on these assumptions to recover additional plain-
text. For example, assuming that the second message begins PROTECTIVE
GEAR and that the word after TEAM in the first message is ARRIVING leads
to additional recoveries.
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(3) This process of assuming text can be continued to a complete solution. Correct
assumptions are easily verified. Incorrect assumptions are quickly disproved.

(4) The most difficult step is making the first correct assumption. Message begin-
nings are the most likely area to yield results, because they are likely to be very
stereotyped. Sometimes, just trying the letters RE at the beginning of a message
will be enough to suggest the text of the messages in depth with it. When
message beginnings do not yield results, more powerful techniques are
available.

c. Crib Dragging. When you cannot assume the beginning of a message, you can still
often correctly assume a particular word that will be in a message. The assumptions
can come from familiarity with previous messages, results of traffic analysis and
direction finding, or other intelligence sources. Once you suspect a word is in one of
two or more messages in depth, you can systematically try the word at every posi-
tion, recover the keys each position would produce, and try the keys in the other
message or messages to see if the keys produce more plaintext. This is a laborious
process performed manually, but a sure one. Fortunately, there are some short cuts
that can be used to simplify the process.

(1) Two messages in depth can generally be combined in such a way that you can
skip the step of key recovery and proceed directly to checking for plaintext.
With the Vigenere square of Figure 10-1, this can be accomplished by treating
one message as if it were plaintext, the other as ciphertext, and producing the
resulting key stream, which is actually a combination of the two ciphertexts. To
demonstrate this process, consider the beginnings of messages 1 and 2 from the
previous example. If we combine message 1 and message 2 as if they were plain-
text and ciphertext respectively, it produces a combination text for the first
groups of YNWPE, Message 1 letters are used as keys in the Vigenere square.
Message 2 letters represent the internals of the Vigenere square. For example,
key H matched against internal F produces plaintext Y.

(2) If we now apply the correct plaintext of message 1 to the combination text using
the Vigenere square, it will directly produce the plaintext of message 2. The
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combination text is again found in the key letter position in the square, and the
plaintext is found in the same position for each message as the original cipher-
texts.

(3) The combination text can be systematically used to try out a plaintext assump-
tion in every position by a process known as crib dragging. Crib is a common
synonym for assumption in cryptanalysts. Consider the following two messages
in depth. The first message was sent by a unit undergoing an artillery barrage. It
is likely that the word ARTILLERY will be found in the message.

(4) The first step to trying out ARTILLERY in message 1 is to create the combina-
tion text. Message 1 is treated as plaintext and message 2 as ciphertext.

(5) The results of trying ARTILLERY in each of the first three positions are shown
below.

10-10



(6) Obviously, not one of the first three tries is the correct placement of
ARTILLERY. The process can be speeded up, however, by plotting the crib ver-
tically and the resulting text for message 2 on a descending diagonal.

(7) The plot above is identical in results to the three separate plots that preceded.
Once this format is adopted, it is easier to write in a whole row at a time.

(8) The plaintext for message 2 appears on the sixth diagonal, as highlighted above.
Once the text is spotted and the crib confirmed, it becomes a matter of depth
reading, as before. The worksheet can now be set up and the rest of the text
recovered.
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(9) With cipher machine and computer based systems that use baud addition,
adding two messages in depth together by baud addition eliminates the key.
The baud addition of the two ciphertexts is identical to the baud addition of the
two original plaintexts.

(10) Whatever type of alphabet square or system of combining bauds is used, there
is usually a way to combine texts in depth to eliminate the effects of the key. If
you are unsure how to approach a particular type of system, test samples you
create for yourself in the system to see how ciphertext can be combined to
eliminate the effect of the key.
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P A R T  F I V E

Transposi t ion  Systems

CHAPTER 11

TYPES OF TRANSPOSITION SYSTEMS

11-1. Nature of Transposition

Transposition systems are fundamentally different from substitution systems. In sub-
stitution systems, plaintext values are replaced with other values. In transposition
systems, plaintext values are rearranged without otherwise changing them. All the
plaintext characters that were present before encipherment are still present after
encipherment. Only the order of the text changes.

a.

b.

c.

d.

Most transposition systems rearrange text by single letters. It is possible to
rearrange complete words or groups of letters rather than single letters, but these
approaches are not very secure and have little practical value. Larger groups than
single letters preserve too much recognizable plaintext.

Some transposition systems go through a single transposition process. These are
called single transposition. Others go through two distinctly separate transposition
processes. These are called double transposition.

Most transposition systems use a geometric process. Plaintext is written into a
geometric figure, most commonly a rectangle or square, and extracted from the
geometric figure by a different path than the way it was entered. When the
geometric figure is a rectangle or square, and the plaintext is entered by rows and
extracted by columns, it is called columnar transposition. When some route other
than rows and columns is used, it is called route transposition.

Another category of transposition is grille transposition. There are several types of
grilles, but each type uses a mask with cut out holes that is placed over the
worksheet. The mask may in turn be rotated or turned over to provide different pat-
terns when placed in different orientations. At each position, the holes lineup with
different spaces on the worksheet. After writing plaintext into the holes, the mask is
removed and the ciphertext extracted by rows or columns. In some variations, the
plaintext may be written in rows or columns and the ciphertext extracted using the
grille. These systems may be difficult to identify initially when first encountered,
but once the process is recognized, the systems are generally solvable.
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e. Transposition systems are easy to identify. Their frequency counts will necessarily
look just like plaintext, since the same letters are still present. There should be no
repeats longer than two or three letters, except for the rare longer accidental repeat.
The monographic phi will be within plaintext limits, but a digraphic phi should be
lower, since repeated digraphs are broken up by transposition. Identifying which
type of transposition is used is much more difficult initially, and you may have to
try different possibilities until you find the particular method used or take advan-
tage of special situations which can occur.

f. Columnar transposition systems can be exploited when keys are reused with
messages of the same length. As will be explained in Chapter 13, the plaintext to
messages with reused keys can often be recovered without regard to the actual
method of encipherment. Once the plaintext is recovered, the method can be
reconstructed.

11-1. Examples of Columnar Transposition
The most common type of transposition is columnar transposition. It is the easiest to
train and use consistently.

a. Simple Columnar Transposition. At its simplest, columnar transposition enters
the plaintext into a rectangle of a predetermined width and extracts ciphertext by
columns from left to right. For example, a simple columnar transposition with a
width of seven is shown below.

(1) The cryptographer receiving the above message knows only that a width of 7
was originally used. The cryptographer rebuilds the matrix by determining the
length of each column and writing the ciphertext back into the columns. With a
width of 7 and a length of 42, each column must have 6 letters. Inscribing the
ciphertext into columns from left to right recreates the original matrix, and the
plaintext can be read by rows.
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(2) Not all messages will come out even on the bottom row. Here is the same

b.

message with STOP omitted. The columns are not all the same length. In this
case, the matrix is called an incompletely filled matrix.

(3)

(4)

(5)

The deciphering cryptographer must now perform the additional step of deter-
mining which columns will be longer than the others. With 38 letters and a
given width of 7, dividing 38 by 7 produces 5 with a remainder of 3. This means
that the basic column length is 5, but the first 3 columns are 1 letter longer.
Sometimes, cryptographers will avoid this additional step by padding message
texts so that the bottom row is always completely filled.

The solution of these systems is extremely easy. The security depends on just
one number, the matrix width. All you have to do to solve a message enciphered
by simple columnar transposition is to try different matrix widths until you find
the right one. To try each width, you just do exactly what the deciphering
cryptographer does. Divide the total length by the trial width and the result and
remainder will tell you the basic column length and how many longer columns
there are.

If you suspect that only completely filled matrices are being used, the solution is
easier. You only need to test widths that evenly divide into the message length
in that case. For example, with a length of 56, you would try widths of 7 and 8. If
neither of these worked, you would also try 4, 14, 2, and 28 to cover all
possibilities. It is better to try the possibilities closest to a perfect square before
you try very tall and very wide matrices.

Numerically-Keyed Columnar Transposition. Numerically-keyed transposition
systems are considerably more secure than simple columnar transposition. You
cannot exhaust all possibilities with just a few tries as you can with the simple
systems. The transposition process is similar to that used to produce transposition
mixed sequences.
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(1)

(2)

The numerical key is commonly based on a keyword or key phrase. Unlike
keywords used to produce mixed sequences, the keyword may have repeated
letters in it. To produce a numerical key from a keyword with repeated letters,
the repeated letters are numbered from left to right.

As with simple columnar transposition, matrices may be completely filled or
incompletely filled. In either case, the plaintext is written horizontally and the
ciphertext is extracted by column in the order determined by the numerical key.
The following example shows an incompletely filled matrix.

(3) The decipherment process for the receiving cryptographer is more complicated
than with simple columnar transposition. The cryptographer must decide the
column lengths, as before. With the above message, the cryptographer divides
the length of the message by the length of the numerical key. In this case, 32
divided by 6 is 5 with a remainder of 2. The basic column length is 5 with two
longer columns at the left. The cryptographer then sets up a matrix with the key
at the top and marks the column lengths.
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(4)

(5)

The ciphertext is now entered by columns according to the numerical key to
produce the plaintext.

The solution of numerically-keyed systems is more complex than for simple
columnar transposition. It is more than just trying all possibilities. The solution
of numerically-keyed columnar transposition is explained in Chapter 12.

11-3. Route Transposition
There are many other ways to transpose messages than columnar transposition using
squares and rectangles. The shape of the geometric figure used can be varied, and the
method of inscribing and extracting text can be varied. Columnar methods are the
most common in military usage, because they are the easiest to learn and use reliably,
but other methods may be encountered. Some of these common methods are shown
below.

a. Route transposition using other geometric figures.

(1) The rail-fence cipher is inscribed by zigzag pattern and extracted by rows.

(2) The triangular pattern is inscribed by rows and extracted by columns.
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b. The next examples show just some of the possibilities for route transposition using
squares or rectangles. Each example is based on REINFORCEMENTS ARRIVING
NOW to help you see how the route was entered. The route can be:

(1) Inscribed by spiral, out by columns.

(2) Inscribed by diagonals, out by alternating rows.

(3) In by outward spiral, out by alternating diagonals.
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(4) In by L-pattern, out by spiral from lower right.

c. Completely filled squares or rectangles are more common with route transposition
than with columnar transposition. The reason is that it is often difficult for the
cryptographers to figure out how to handle an incompletely filled matrix. It is sim-
pler in practice to completely fill each matrix than to provide rules to cover every
incompletely filled situation.

d. The solution of route transposition is largely a matter of trial and error. When you
suspect route transposition, see if the message length is a perfect square or if the
matrix can be set up as a completely filled rectangle. Then try entering the cipher-
text by different routes, and look for visible plaintext by another route.
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CHAPTER 12

SOLUTION OF NUMERICALLY-KEYED
COLUMNAR TRANSPOSITION CIPHERS

12-1.  Completely Filled Matrices - Determining
Matrix Size

When completely filled matrices are known or suspected, the first step in their solution
is to determine the matrix size. As discussed in Chapter 11 for simple columnar
transposition, the correct width must be an even divisor of the message length. With
simple columnar transposition, the correct width could be confirmed easily, because
plaintext will appear on the rows when the width is correctly selected. It is not as sim-
ple with numerically-keyed transposition. Although each row will contain the letters of
plaintext for that row when the width is correctly selected, the letters will be out of
order. The key to recognition is the vowel count on each row. Vowels should appear
consistently with fairly even counts on each row when the correct width is tried. In
plaintext, vowels appear about 40 percent of the time even in small samples of text.
This is necessary for text to be pronounceable. If some of the rows have too many or too
few vowels, you probably have the wrong width. Consider the next cryptogram.

a. The cryptogram has 56 letters, assuming the final Xs are all nulls. If a completely
filled matrix is suggested by past experience, then the matrix is probably either 7 or
8 letters wide. Write the cryptogram by columns into a trial matrix of each width
and count the vowels in each row.
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b. The first matrix, with a width of seven letters, has the more regular spacing of
vowels. The letter Q in the first matrix also has a U on the same row, whereas the
second matrix does not. The first matrix is clearly the better possibility.

12-2. Matrix Reconstruction by Anagramming
Continuing the same problem, the object now is to rearrange the columns into the
original order. The rearrangement of letters to find the original plaintext order is called
anagramming. You may be able to see possibilities for complete words on some of the
rows, but the Q and the U on the seventh row provide the most obvious starting point.
To recover the numerical key at the same time, number the columns in numerical
order before starting reconstruction.

a. All the letter combinations produced by placing columns 7 and 5 together look
reasonable for plaintext. At this point, you can see that the last two rows should
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both be followed by vowels. Both the 1 and 6 columns end with two vowels. Here is
what each looks like when added to the initial two columns.

b. Both possibilities give good plaintext letter combinations, but at this point, several
words are suggested in the second match. REF.. ..CE could be part of
REFERENCE. XTW could be part of SIX TWO, and the UMB in that case would
suggest NUMBER. With these probable words, clearly column 3 follows 756.
Column 7 is the left-hand column, because the letters needed for REFERENCE,
SIX, and NUMBER are on the row above in column 4. Adding columns 3 and 4
produces the next matrix.

c. The remaining two columns are easily filled in to complete the solution.
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12-3. Incompletely Filled Matrices - Hat Diagrams
Incompletely filled matrices are also solved by anagramming, but it is a more difficult
process because you cannot initially tell which letters are on the same row with each
other. If you know or can correctly assume the width of the matrix, you can limit the
possibilities. Consider the next cryptogram, which is expected to have a matrix width
of eight letters.

a. With a length of 76 letters and a suspected width of 8, there must be four columns
with 10 letters and four columns with 9 letters. We can show the range of letters that
could be placed in each column by trying the first four columns as the longer
columns and alternately, the last four columns as the long columns. The true
arrangement is probably neither, but it will serve to show the possible range of first
and last letters for each column.

b. These two extreme situations can be combined into a single diagram, called a hat
diagram. It is constructed by using the first diagram. Next, combine the letters that
the second diagram shows can precede the already listed letters by adding them to
the top of the first diagram. Similarly, draw a line across the bottom of the first
diagram to show the possible bottom letters. The altered first matrix is now the
completed hat diagram.
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c. The completed hat diagram can now be used as a guide to show how columns may
be aligned together. Its value can be seen if you try to place the Q in the text before
a U. There are two Us in the cryptogram. The Q is necessarily near the top of the
matrix. The U in column 2 can only be at the bottom of the matrix. The U in
column 3 can only be at or near the top of the matrix. The correct U to place with
the Q is now obvious. Lining up the Q in column 8 with the U from column 3
produces an initial reconstruction.
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d. Next, there is an X near the bottom of the matrix in column 2. It will combine well
with the SI of the first two columns to produce SIX.

e. SIX is not the only number near the bottom of the matrix. FOUR and TWO are
likely on the last two rows, and column 4 is available with RO near the bottom.

f. The E after SIX suggests EIGHT. The numbers themselves suggest the word
COORDINATES, which appears in the middle of the matrix. With these words
written in, the rest of the columns can be placed.
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g.

h.

All letters are now used, but several letters appear at both the top and bottom of the
matrix. The first word of the message is ALTERNATE, and the letters before it all
appear correctly at the bottom of columns. The L at the bottom after ONE correctly
appears as part of ALTERNATE at the top. Removing the duplicated letters and
shifting ALTERNATE to begin at the left-hand column completes the solution.

This solution depended on correctly identifying the width of the matrix and the
fortunate appearance of the Q and U. Without the Q and U and without any
indication of the width, a great deal more trial and error would be required for a
successful solution. Hat diagrams can be constructed for different possible widths,
for example, and probable words searched for within the structure of the diagram.
The solution is still possible in most cases, although it will often take longer than
the example did. When the same keys are reused for a period, special situations can
arise which make the solution much easier. The next chapter shows the techniques
that can be used in these special situations.

12-6



CHAPTER 13

TRANSPOSITION SPECIAL SOLUTIONS

13-1. Special Exploitable Situations

Military forces are rarely equipped to change cryptosystem keys with every message
transmitted. The logistics and management problems of providing enough different
keys and controlling their use are difficult to handle. Normally, keys will be reused for
a period before they are changed. With transposition systems, several special situa-
tions can arise when keys are reused that make a solution possible when the system
might otherwise resist successful analysis. One of these situations arises in columnar
transposition whenever similar beginnings and endings are used with the same width
matrix. The keys do not have to be the same in this case as long as the width is the
same. Another more general situation occurs whenever two or more different messages
of the same length occur using exactly the same keys. Each of these situations is
explained in the following paragraphs.

13-2. Similar Beginnings and Endings
With columnar transposition, repeated message beginnings or endings can cause an
easily recognizable and exploitable situation. When the same width keys are used and
the beginnings are the same, the tops of the columns in each message will consist of the
same letters. When the length of the repeated beginning is several times as long as the
width of the matrix, these repeated letters are easy to spot.

a. The next two messages demonstrate the techniques that can be used when similar
beginnings are encountered. Repeated segments between the two messages are
underlined.

13-1



(1) There are eight repeated segments in each, which shows that the messages are

b.

(2)

(3)

(4)

(5)

(6)

each eight columns wide. The repeated segments are not in the same order,
which shows that the two messages use different numerical keys.

Message 1 has 95 letters. Dividing 8 into 95 gives 11 with a remainder of 7. This
means that all but one column must have 12 letters. The distance between
repeats shows that this is true. All segments have 12 letters except for the fifth
segment, which has 11 letters. The fifth segment, beginning IFA, must be the
right-hand column of the matrix.

Message 2 has 92 letters. Four columns have 12 letters and four columns have
11 letters.

All repeated segments contain three letters except for the ASOL segment. The
column beginning ASOL is probably the left-hand column.

As a result of these observations, we can place the first and last columns in each
matrix, and we can separate the middle six columns into two groups of three,
based on the length of the columns in message 2.

Completion of the solution from here is straightforward. Anagram each group of
three columns in each message, and the solution is complete. The similar begin-
ning is ALL REQUISITIONS FOR MEDICAL.

Messages with similar endings, such as a repeated signature block, show repeated
segments which represent the bottoms of columns instead of the top. The solution is
approached the same way, except that the text will not necessarily appear in the
same columns in both messages.
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13-3. Messages With the Same Length and Keys
Whenever two or more messages have the same length and are transposed with the
same keys, they can be solved together. The more messages you find that are the same
length and use the same keys, the easier they are to solve. This technique can be used
regardless of the type of transposition system.

a. Solving messages with the same length and keys is particularly effective with
columnar transposition. The next example shows how the solution can be
approached. The five messages all use the same keys. Their positions have been
numbered for easy reference and to aid in key recovery.

(1)

(2)

The Q in message 2 in position 1 must certainly be followed by the U in
position 8.

Position 1 must be at the top of a column in the original matrix, since columns
are extracted beginning at the top. Position 8 is also probably at the top of a
column. This applies not just to message 2, but to all five messages. The
position 1 column can be written next to position 8.

(3) Position 2 must be from the second row of the matrix. If position 8 is from the
top row, then position 9 must be from the second row, also. Similarly, positions
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(4)

(5)

3 and 10 are from the third row. Positions 4 and 11 are from the fourth row. Posi-
tions 5 and 12 are probably from the fifth row, although these are short messages
and there might not be as many as five rows.

Now the task is to find additional columns to add to the fragments already
started. For example, the QU in message 2 should be followed by a vowel, and
the most likely letter after JU in message 5 is N. There are three columns with
an N in message 5, and only one of these, position 19, has a vowel in message 2.
Therefore, we will add columns 19, 20, 21, 22, and 23 to our fragments.

All of the fragments produce good plaintext except, possibly, the last one. QUA
will usually be followed by an R. Of the two columns with an R in message 2,
column 12 provides the best combinations.
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(6) All of the matches give good plaintext, except the fifth set, which clearly does
not belong now. It is easy now to see words to build on, such as ARTILLERY,
QUARTERS or HEADQUARTERS, JUNCTION, SUPPORT, FIVE, and
others. All of these leads are added to the completely anagrammed messages.

(7) The final step in the solution is to recover the numerical keys. Looking at the
beginning, the pattern starts to repeat after seven letters, so the original matrix
was seven letters wide. The numerical key, derivable by observing the order in
which the columns were extracted, was 4275136.

b. The technique of solving messages of the same length and keys can be used with
any transposition system. It can be used as the basis for recovery of more difficult
transposition systems such as large grilles and double transposition. The cyclic pat-
tern of columnar transposition aided the solution of the example above. Given four
or more messages of the same length and keys, however, the complete messages can
often be anagrammed without the help of the cyclic pattern.
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P A R T  S I X

Analysis  of  Code Systems

CHAPTER 14

TYPES OF CODE SYSTEMS

14-1.  The Nature of Code Systems

As explained in Chapter 1, the key feature that distinguishes a code from a substitu-
tion cipher is that a code will substitute for words as well as characters.

a.

b.

c.

d.

Codes range in size from small charts or lists on a single sheet of paper to books as
large as an unabridged dictionary.

Plaintext values are replaced by code groups or code words. A code group or word
may replace anything from a single character to a whole sentence.

Since codes can compress whole sentences into a small code group, not all codes are
used for security purposes. Some are used for economy instead, by replacing com-
mon sentences and phrases with a single group. For example, radio operators use
Q and Z signals as a brevity code. Q and Z signals are three letter code groups
beginning with Q or Z that stand for common communications procedures. A single
code Q or Z signal replaces sentences or phrases such as QSA, My signal strength is
. . . and ZNN, I have nothing now. Operators memorize the Q and Z signals that they
commonly use and the result is quicker, more economical communications.

Some codes are used for prearranged messages only. Limited in size and purpose, a
single code group may be transmitted as a signal to begin a preplanned attack, for
example. Prearranged message codes are sometimes referred to as pamcodes.
Prearranged message codes may also take the form of innocent communications, so
that an apparently harmless message contains a secret meaning. The message, Les
sanglots longs des violons de l‘automne, a harmless sentence in French, signaled the
French underground in World War II that the Allied invasion of France was to begin
soon. Codes with an innocent appearance but a secret meaning are known as open
codes.

14-0



e. Prearranged message codes can only be used for limited, preplanned purposes.
General purpose codes which can be used for any communications are more com-
mon. All general purpose codes must include within them, a provision for spelling
words that are not included in their vocabulary. Even when very large book codes
are used, proper names will sometimes need to be encoded that are not in the code’s
vocabulary. General purpose codes thus share some of the characteristics of sub-
stitution ciphers.

f. Codes are at their weakest when they are used to spell words. Most codes are broken
into through spelling. Large codes attempt to defeat this weakness by providing
many variants for letters and common syllables. The letter E might be encoded by
10 different code groups in a large code, for example. Other code groups would repre-
sent common syllables with E in them like RE, ER, EN, and ENT. In this respect,
codes are similar to syllabary squares, and the initial approach to analysis can be
similar between syllabary squares and codes.

g. When a high degree of security is required using codes, there are two approaches to
increasing the security of codes. One is to use very large book codes, since the larger
the code, the more secure it is. The other is to further encipher the code to produce
an enciphered code. Any of the cipher procedures discussed earlier in this manual
can be used, but the most common is to use polyalphabetic encipherment.
Repeating keys and long-running keys may be used. It is one way to combine the
advantages of brevity with the added security of polyalphabetics, although such
procedures are time-consuming to use. They cannot be used practically in rapidly
changing combat situations, for example, when speed of communications is impor-
tant. Large codes and enciphered codes were common earlier in this century when a
high degree of security was desired. Today, with advances in electronics, cipher
machine and computer based systems are more common when a high degree of
security is required.

14-2. Book Codes
Codes too large to be printed on just one or two pages are called book codes. They may
range from small pamphlets to large bound books.

a. The code values in book codes may consist of letters, numbers, or a combination of
letters and numbers. Usually, the code groups are a constant length, but there are
occasional exceptions. Code values used primarily for voice communications will
sometimes consist of pronounceable words rather than regular length groupings of
characters. We will refer to only code groups in the rest of this chapter and the next,
but you should understand that comments about code groups also apply to code
words.
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b.

c.

The simplest book codes consist of a single orderly listing of code groups and their
meanings. The code groups are listed in the book in alphabetical or numerical
order, and their meanings are also in a logical order. This single listing is used for
encoding and decoding, and is called a one-part code. The plaintext values may be
strictly alphabetical in arrangement or may be separated into separate sections for
words, letters and syllables, and numbers. Occasionally, they will be arranged
topically with such things as units in one section, weapons systems in another,
place-names in another, and so on. The key feature of one-part codes is that when
the code groups are listed in order, their plaintext meanings will also be in a logical
order. A sample portion of a one-part code is shown below.

The orderly structure of one-part codes makes them easy to use, but greatly reduces
their security. The analyst can use the structure to narrow down possible meanings
for code groups. More secure codes are randomly arranged, and are necessarily
printed in two parts. One section lists the code groups in order, and it is used for
decoding. The other section, containing exactly the same information, lists the
plaintext values in order, and is used for encoding. This type of code is called a two-
part code. Portions of the encoding and decoding sections of a two-part code are
shown below. Note that one group occurs in common between the two parts.

14-3. Matrix Codes and Code Charts

Small codes can be conveniently printed in the form of a small coordinate matrix
system.

a. Typically 10 by 10 or larger, matrix codes, also known as code charts, can contain
letters, syllables, numbers, and a small vocabulary of words. They are very easy to
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use, and communicators can be trained in their use quickly and easily. They also of-
fer more security than most simple ciphers.

b. Code charts are easily changed from one cryptoperiod to the next by simply chang-
ing the coordinates, while retaining the same matrix.

c. They are a very close relative to the syllabary square cipher. If the syllabary square
shown in Chapter 5 contained some words as well as letters, syllables, and numbers,
it would be a code instead of a cipher.

d. One type of code chart places two plaintext values in each cell—an upper value and
a lower value. The lower values are all words. The upper values are all numbers,
letters, or syllables. Two of the cells are set aside as shift values to indicate whether
to read the upper values or lower values in the code groups that follow. A sample
chart of this type is shown in Figure 14-1. This example uses letters for coordinates,
and has variants on each row and column. The word ARTILLERY, for example,
could be encoded as TF, TI, QF, or QI. The cells MU and UU are begin and end
spell indicators. The bottom values in each cell are used until a begin spell group is
sent. Then the top values are used until the end spell group is used to shift back to
the lower values.
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CHAPTER 15

ANALYSIS OF SYLLABARY SPELLING

15-1. Identification of Syllabary Spelling

The key to breaking into codes and syllabary ciphers is to identify and exploit
syllabary spelling. If possible, try to locate instances where the same word is spelled in
different ways by combining the syllables and letters in different combinations each
time. This situation can be exploited fairly easily.

a.

b.

c.

Identifying repeated syllabary spelling in syllabary squares was demonstrated in
Chapter 5.

In codes, only certain groups represent letters and syllables, but these tend to
cluster together. With code charts, if begin spell or letter shift groups are used,
identifying these special purpose groups serves to point right to groups used for
spelling. Often begin spell-end spell groups or letter shift-word shift groups are the
highest frequency groups and tend to alternate in the text. This makes them quite
easy to spot.

In codes where no shift groups are used, the code groups that represent letters and
syllables tend to cluster together, just as code groups that represent numbers do. If
necessary, computer produced indexes of code groups and the code groups they
appear with will help to isolate those used for spelling.

15-2. Recovery of Syllabary Spelling
By comparing different spellings of the same word, you can often figure out which
groups represent single letters and which represents syllables. Then, the groups which
represent syllables can be replaced by groups that represent single letters. Reduction
to single letter terms, in turn, enables recognition of word patterns. This approach to
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recovery of syllabary spelling applies equally to syllabary squares, code charts, and
book codes. The segments below, each of which represents the same plaintext,
illustrates how spelling can be recovered.

a. The first three segments all include the text 60 60 preceded by two, three, or four
dinomes. If we suppose that the four dinome spelling is all single letters because it is
longer than the others, then the two dinomes in segment B must each represent
digraphs. Segment C with its three dinomes helps to confirm this breakout.

b. Similarly, segments A and B end with 88 14 28. Segment D ends 88 14 25 35;
therefore, 28 must equate to 25 35.

c. Similar comparisons show that 14 equates to 11 60, 59 equates to 54 88, and 76
equates to 74 60.

d. We now take the first segment, for example, and replace all the dinomes that
equate to two other dinomes with the single letter equivalents.

e. Reduced to single letter terms, the word pattern for the replacement segment is
-ABCDDEFGGEHBA. This word pattern equates to the word RECON-
NAISSANCE.

f. These recoveries can, in turn, be used to recover additional plaintext. Whether the
system is a syllabary square, a code chart, or a book code, the initial entry is the
hardest part. Once the first confirmed recoveries are made, follow-on recoveries are
easier.

g. The example above depended on finding sufficient repeated text to reduce the seg-
ments to single letter equivalents. This will not always be possible, but it is only one
of the approaches an analyst can use to aid in recovery of the system. Anything that
provides clues to the plaintext can help solve the system. Information from other
sources such as traffic analysis and direction finding can help. Traffic passed in
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other systems may provide isologs or clear clues to the content of the text. If the
code is a one-part or uses an orderly matrix, the orderliness itself is a major aid in
recovering plaintext. Encoded numbers may also help.

15-3. Recovery of Numbers
Another vulnerable point of entry in syllabary squares and codes is encrypted num-
bers, as has been demonstrated with other systems. Numbers, whether spelled out or
encrypted by direct equivalents tend to occur with each other. Grid coordinates will
typically occur in groups of four or six digits. Times are usually four digits, and tend to
be rounded off into multiples of 5, 10, or 15 minutes. Times always begin with 0, 1, or 2.
The third digit of a time is always 5 or less. Because of these characteristics, it is often
quite easy to recognize the equivalents of 0, 1, 2, 3, 4, and 5. Even when variants are
used, they tend to stand out. Given these six values, others readily follow. Recovered
grid coordinates, in turn, give major clues to the rest of the text. Numbers like 7.62
(millimeter), 47 (AK-47 rifle), 45 (caliber), and 72 (T-72 tank) all provide clues to
surrounding text.

15-4. Recovery of Words
Initial entry into code systems is often made through the elements that are most like a
cipher. Spelled out words and encoded numbers are the weakest points in a code. Once
these cipher-like groups are recovered, making further recoveries depends on recogniz-
ing the meaning of code groups that represent words and phrases. Slightly different
skills are required to recover the vocabulary of a code than are required for ciphers.
Cipher analysis tends to be more mathematical in nature.

a.

b.

Code recovery is more related to language skills, particularly when the text is not in
English. Although words can be recovered as their English equivalents, the actual
foreign language words must be known to take advantage of any alphabetic struc-
ture in the code. In languages where the sentence structure varies from English, the
characteristic structures must be familiar to make sense of the code.

Codes are less apt to be fully recovered than ciphers. Code groups cannot be
recovered until they are used, and large codes may contain many groups that
remain unused for a long time. Each code group must be observed in use several
times before its plaintext value can be confidently assigned. Errors are very com-
mon in encrypted traffic, and a group must be reused several times just to be sure it
is not in error. It also takes repeated usage, in many cases, to be sure which of
several words with similar meanings represent a particular code group. Recovery of
book codes may never be completed, even when most text becomes readable at an
early stage.
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APPENDIX A

FREQUENCY DISTRIBUTIONS OF
ENGLISH DIGRAPHS

Frequency distributions of English digraphs appearing in 50,000 letters of government
plaintext telegrams, reduced to 5,000 digraphs.
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APPENDIX B

FREQUENCY DISTRIBUTIONS OF
ENGLISH TRIGRAPHS

Frequency distributions of English trigraphs appearing in 50,000 letters of government
plaintext telegrams.
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APPENDIX C

FREQUENCY DISTRIBUTIONS OF
ENGLISH TETRAGRAPHS

Frequency distributions of English tetragraphs appearing in 50,000 letters of govern-
ment plaintext telegrams.
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APPENDIX D

WORD AND PATTERN TABLES
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APPENDIX E

UTILITY TABLES
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APPENDIX F

CRYPTANALYSIS SUPPORT PROGRAM

F-1. Program Support

This program supports the development of FM 34-40-2, Basic Cryptanalysis. It gives
the capability to encipher and decipher messages in monoalphabetic and
polyalphabetic substitution systems, produce a variety of statistical data about the
encrypted messages, and print the results or save them to disk. Because of its limited
purpose, the program does not support on-screen analysis. The printed results can be
used off-line to aid in analysis, however. The program should be particularly useful in
preparing examples and exercises for training cryptanalytic techniques.

F-2. On-screen Analysis

The logical structure is present in the program to support on-screen analysis, if
desired. The coding that now sends results to disk or printer can be modified to display
on screen as well. Lines 6060 through 6780 provide the basis for this. This code together
with the alphabet entry subroutines in lines 3920 through 5760 can be used to enter
partial trial recoveries and see the results for both monoalphabetic and polyalphabetic
systems.

F-3. Program Format
The listing has been specially formatted to make it easy to follow the program logic.
Each statement in multiple statement numbered lines has been printed on a separate
line with each follow-on statement indicated by the statement separator (colon) at the
beginning of the line. FOR-NEXT commands have been indented to show the level
and structure of each. Similarly, the parts of IF...THEN...ELSE statements have been
printed on separate lines and then indented to show their structure clearly. If the
program is typed in by hand, the statements in a single numbered line should be
entered continuously, not on separate lines in most versions of BASIC. Indentation of
FOR-NEXT structures can be preserved, if desired, but not for IF...THEN...ELSE
statements.
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GLOSSARY

ASCII

C
CEOI
COMINT
CR

DA Pam

EBDA
ERDL

FIG
FM

IC

LF
LTR

MOS

NO

P

SOI

TM
TRADOC

USAISD

z

American standard code for information interchange

ciphertext
Communications-Electronics Operation Instructions
communications intelligence
carriage return

Department of the Army Pamphlet

encipher below, decipher above
encipher right, decipher left

figure
field manual

index of coincidence

line feed
letter

military occupational specialty

number

plaintext

Signal Operation Instructions

technical manual
United States Army Training and Doctrine Command

United States Army Intelligence School, Fort Devens

Zulu
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